Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38850236

RESUMO

Multifunctional photodetectors (PDs) with broadband responsivity (R) and specific detectivity (D*) at low light intensities are gaining significant attention. Thus, we report a bilayer PD creatively fabricated by layering two-dimensional (2D) Sb2Se3 nanoflakes (NFs) on one-dimensional (1D) ZnO nanorods (NRs) using simple thermal transfer and hydrothermal processes. The unique coupling of these two layers of materials in a nanostructured form, such as 2D-Sb2Se3 NFs/1D-ZnO NRs, provides an effective large surface area, robust charge transport paths, and light-trapping effects that enhance light harvesting. Furthermore, the combination of both layers can effectively facilitate photoactivity owing to proper band alignment. The as-fabricated device demonstrated superior overall performance in terms of a suitable bandwidth, good R, and high D* under low-intensity light, unlike the single-layered 1D-ZnO NRs and 2D-Sb2Se3 NF structures alone, which had poor detectivity or response in the measured spectral range. The PD demonstrated a spectral photoresponse ranging from ultraviolet (UV) to visible (220-628 nm) light at intensities as low as 0.15 mW·cm-2. The PD yielded a D* value of 3.15 × 1013 Jones (220 nm), which reached up to 5.95 × 1013 Jones in the visible light region (628 nm) at a 3 V bias. This study demonstrated that the 2D-Sb2Se3 NFs/1D-ZnO NRs PD has excellent potential for low-intensity light detection with a broad bandwidth, which is useful for signal communications and optoelectronic systems.

2.
ACS Appl Mater Interfaces ; 16(17): 21746-21756, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38631911

RESUMO

Considering the importance of physics and chemistry at material interfaces, we have explored the coupling of multinary chalcogenide semiconductor Cu2NiSnS4 nanoparticles (CNTS NPs) for the first time with the noble metal (Au) to form Au-CNTS nano-heterostructures (NHSs). The Au-CNTS NHSs is synthesized by a simple facile hot injection method. Synergistic experimental and theoretical approaches are employed to characterize the structural, optical, and electrical properties of the Au-CNTS NHSs. The absorption spectra demonstrate enhanced and broadened optical absorption in the ultraviolet-visible-near-infrared (UV-Vis-NIR) region, which is corroborated by cyclic voltammetry (CV) readings. CV measurements show type II staggered band alignment, with a conduction band offset (CBO) of 0.21 and 0.23 eV at the Au-CNTS/CdS and CNTS/CdS interface, respectively. Complementary first-principles density functional theory (DFT) calculations predict the formation of a stable Au-CNTS NHSs, with the Au nanoparticle transferring its electrons to the CNTS. Moreover, our interface analysis using ultrafast transient absorption experiments demonstrate that the Au-CNTS NHSs facilitates efficient transport and separation of photoexcited charge carriers when compared to pristine CNTS. The transient measurements further reveal a plasmonic electronic transfer from the Au nanoparticle to CNTS. Our advanced analysis and findings will prompt investigations into new functional materials and their photo/electrocatalysis and optoelectronic device applications in the future.

3.
Chemosphere ; 340: 139890, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37619747

RESUMO

Organic dyes present in industrial wastewater are the major contributor to water pollution, which harm human health and the environment. Photocatalytic dye degradation is an effective strategy for water remediation by converting these organic dyes waste into non-harmful by-products. Therefore, in this study, Ni-doped LaFeO3 (NLFO) perovskite nanoparticles were extensively explored for photocatalytic degradation of cationic and anionic dyes and their mixture. The NLFO nanoparticles were successfully synthesized by surfactant assisted hydrothermal method under controlled Ni doping. The X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM) revealed the variation in size (40-70 nm) of orthorhombic crystalline LFO nanoparticles with Ni doping and hence the size of microspheres (0.78. to 1.78 µm). The kinetic studies revealed that the LaFe0·6Ni0·4O3 performed well by providing degradation efficiency of 99.2% in 210 min, 99.1% in 100 min, and 98.4% in 70 min for Crystal Violet (CV), Congo Red (CR), and their mixture with rate constant of 0.019, 0.039, and 0.055 min-1 respectively. The radical scavenger tests indicated the synergetic contributions of O2- and •OH- active radicals in faster degradation of CV and CR dye mixture. The stepwise fragmentation of dye molecule during the photocatalytic degradation identified from the LCMS indicates the degradation of CV dye through de-alkylation and benzene ring breaking, whereas azo bond cleavage and oxidation lead to low molecular weight intermediates for CR dye, which all together helped to degrade their dye mixture (50 mg L-1 and 100 mg L-1) in significantly lesser time (70 min). Overall, the Ni-doped LFO microsphere consisting of nanoparticles acts as a superior catalyst for the more efficient and faster degradation of binary dye mixture.


Assuntos
Corantes , Óxidos , Humanos , Cinética , Água , Vermelho Congo , Cátions , Violeta Genciana
4.
RSC Adv ; 13(32): 21962-21970, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37483671

RESUMO

A porous 1D nanostructure provides much shorter electron transport pathways, thereby helping to improve the life cycle of the device and overcome poor ionic and electronic conductivity, interfacial impedance between electrode-electrolyte interface, and low volumetric energy density. In view of this, we report on the feasibility of 1D porous NiO nanorods comprising interlocked NiO nanoparticles as an active electrode for capturing greenhouse CO2, effective supercapacitors, and efficient electrocatalytic water-splitting applications. The nanorods with a size less than 100 nm were formed by stacking cubic crystalline NiO nanoparticles with dimensions less than 10 nm, providing the necessary porosity. The existence of Ni2+ and its octahedral coordination with O2- is corroborated by XPS and EXAFS. The SAXS profile and BET analysis showed 84.731 m2 g-1 surface area for the porous NiO nanorods. The NiO nanorods provided significant surface-area and the active-surface-sites thus yielded a CO2 uptake of 63 mmol g-1 at 273 K via physisorption, a specific-capacitance (CS) of 368 F g-1, along with a retention of 76.84% after 2500 cycles, and worthy electrocatalytic water splitting with an overpotential of 345 and 441 mV for HER and OER activities, respectively. Therefore, the porous 1D NiO as an active electrode shows multifunctionality toward sustainable environmental and energy applications.

5.
Heliyon ; 7(6): e07297, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34189324

RESUMO

MTO nanodiscs synthesized using the hydrothermal approach were explored for the photocatalytic removal of methylene blue (MB), rhodamine B (RhB), congo red (CR), and methyl orange (MO). The disc-like structures of ~16 nm thick and ~291 nm average diameter of stoichiometric MTO were rhombohedral in nature. The MTO nanodiscs delivered stable and recyclable photocatalytic activity under Xe lamp irradiation. The kinetic studies showed the 89.7, 80.4, 79.4, and 79.4 % degradation of MB, RhB, MO, and CR at the rate constants of 0.011(±0.001), 0.006(±0.001), 0.007(±0.0007), and 0.009 (±0.0001) min-1, respectively, after the 180 min of irradiation. The substantial function of photogenerated holes and hydroxide radicals pertaining to the dye removal phenomena is confirmed by radical scavenger trapping studies. Overall, the present studies provide a way to develop pristine and heterostructure perovskite for photocatalysts degradation of various organic wastes.

6.
ACS Omega ; 5(31): 19315-19330, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32803025

RESUMO

The authors report on the effect of manganese (Mn) substitution on the crystal chemistry, morphology, particle size distribution characteristics, chemical bonding, structure, and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles (NPs) synthesized by a simple, cost-effective, and eco-friendly one-pot aqueous hydrothermal method. Crystal structure analyses indicate that the Mn(II)-substituted cobalt ferrites, Co1-x Mn x Fe2O4 (CMFO, x = 0.0-0.5), were crystalline with a cubic inverse spinel structure (space group Fd 3 m ). The average crystallite size increases from 8 to 14 nm with increasing Mn(II) content; the crystal growth follows an exponential growth function while the lattice parameters follow Vegard's law. Chemical bonding analyses made using Raman spectroscopic studies further confirm the cubic inverse spinel phase. The relative changes in specific vibrational modes related to octahedral sites as a function of Mn content suggest a gradual change of measure of inversion of the ferrite lattice at nanoscale dimensions. Small-angle X-ray scattering and electron microscopy revealed a narrow particle size distribution with the spherical shape morphology of the CMFO NPs. The zero-field-cooled and field-cooled magnetic measurements revealed the superparamagnetic behavior of CMFO NPs at room temperature. The sample with x = 0.3 indicates a lower value of blocking temperature (9.16 K) with the improved (maximum) value of saturation magnetization. The results and the structure-composition-property correlation suggest that the economic, eco-friendly hydrothermal approach can be adopted to process superparamagnetic nanostructured magnetic materials at a relatively lower temperature for practical electronic and electromagnetic device applications.

7.
RSC Adv ; 10(39): 23446-23456, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35520327

RESUMO

We synthesized mesoporous cobalt titanate (CTO) microrods via the sol-gel method as an outstanding working electrode for the supercapacitor. The mesoporous CTO microrods were amassed in hexagonal shapes of an average width of ∼670 nm, and were composed of nanoparticles of average diameter ∼41 nm. The well crystalline CTO microrods of the hexagonal phase to the R3̄ space group possessed an average pore size distribution of 3.92 nm throughout the microrod. The mesoporous CTO microrods with increased textural boundaries played a vital role in the diffusion of ions, and they provided a specific capacitance of 608.4 F g-1 and a specific power of 4835.7 W kg-1 and a specific energy of 9.77 W h kg-1 in an aqueous 2 M KOH electrolyte, which was remarkably better than those of Ti, La, Cr, Fe, Ni, and Sr-based perovskites or their mixed heterostructures supplemented by metal oxides as an impurity. Furthermore, the diffusion-controlled access to the OH- ions (0.27 µs) deep inside the microrod conveyed high stability, a long life cycle for up to 1950 continuous charging-discharging cycles, and excellent capacitance retention of 82.3%. Overall, the mesoporous CTO shows its potential as an electrode for a long-cycle supercapacitor, and provides opportunities for additional enhancement after developing the core-shell hetero-architecture with other metal oxide materials such as MnO2, and TiO2.

8.
Phys Chem Chem Phys ; 20(27): 18429-18435, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29947380

RESUMO

Nanostructures of bismuth selenide (Bi2Se3), a 3D topological insulator material, and nickel (Ni) doped Bi2Se3 samples were prepared by a hydrothermal method to explore the field emission properties. An enrichment in the field electron emission (FE) properties in terms of the threshold and turn-on field values of Bi2Se3 and Ni doped Bi2Se3 nanostructures was measured at a base pressure of ∼1 × 10-8 mbar. Using the background of the Fowler-Nordheim (FN) theory a field enhancement factor (ß) of 5.7 × 103 and a threshold field value of 2.5 V µm-1 for 7.5% Ni doped Bi2Se3 were determined by investigating the J-E plot of the FE data. The value of ß is three times higher than that of pure Bi2Se3 confirming the superior FE properties. The emission current was found to be very stable with the property of long standing durability as a negligible amount of variation was observed when measured at a constant value of 5 mA for 3 hours. The experimental results signify many opportunities for potential applications of Ni doped Bi2Se3 as a source of electrons in scanning as well as transmission electron microscopy, flat panel displays and as an X-ray generator, etc.

9.
Nanoscale ; 10(4): 1779-1787, 2018 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-29308816

RESUMO

The thermally stable and crystalline 2D layered mesoporous hexagonal platelets of cobalt oxide (Co3O4) with (111) facets were prepared by using the template-free wet chemical synthesis approach. The high surface energy (111) facets known for a highly electroactive surface are expected to enhance the electrochemical properties, especially the rate capability. The highly crystalline Co3O4 with an average particle size of 25 nm formed a 2D mesoporous layered structure, with an average thickness of ∼40 nm, a pore size of 8-10 nm, and a specific surface area of 45.68 m2 g-1 promoting large surface confined electrochemical reaction. The 2D layered mesoporous Co3O4 exhibits a maximum specific capacity of 305 mA h g-1 at a scan rate of 5 mV s-1 and 137.6 mA h g-1 at a current density of 434.8 mA g-1. The maximum energy and power densities of 32.03 W h kg-1 and 9.36 kW kg-1, respectively, are achieved from the 2D hexagonal platelets of mesoporous Co3O4 nanoparticles with (111) facets. An excellent ultra-high rate capability of ∼62% capacity retention was observed after increasing the discharge current density from ∼434.8 mA g-1 to 43 480 mA g-1. Furthermore, a cycling stability of 81.25% was achieved even after 2020 charge-discharge cycles at a current density of 12 170 mA g-1. This high performance and ultra-high rate capability could be attributed to the (111) facets 'crystal plane' effect of Co3O4. Our results presented here confirm that the 2D mesoporous layered hexagonal platelets of Co3O4 exhibit "battery-mimic" behaviour in an aqueous electrolyte of KOH.

10.
RSC Adv ; 8(11): 5882-5890, 2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35539598

RESUMO

A thermal decomposition route with different sintering temperatures was employed to prepare non-stoichiometric nickel oxide (Ni1-δ O) from Ni(NO3)2·6H2O as a precursor. The non-stoichiometry of samples was then studied chemically by iodometric titration, wherein the concentration of Ni3+ determined by chemical analysis, which is increasing with increasing excess of oxygen or reducing the sintering temperature from the stoichiometric NiO; it decreases as sintering temperature increases. These results were corroborated by the excess oxygen obtained from the thermo-gravimetric analysis (TGA). X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) techniques indicate the crystalline nature, Ni-O bond vibrations and cubic structural phase of Ni1-δ O. The change in oxidation state of nickel from Ni3+ to Ni2+ were seen in the X-ray photoelectron spectroscopy (XPS) analysis and found to be completely saturated in Ni2+ as the sintering temperature reaches 700 °C. This analysis accounts for the implication of non-stoichiometric on the magnetization data, which indicate a shift in antiferromagnetic ordering temperature (T N) due to associated increased magnetic disorder. A sharp transition in the specific heat capacity at T N and a shift towards lower temperature are also evidenced with respect to the non-stoichiometry of the system.

11.
RSC Adv ; 8(38): 21664-21670, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35539914

RESUMO

We observed enhanced field emission (FE) behavior for spitzer shaped ZnO nanowires synthesized via a hydrothermal approach. The spitzer shaped and pointed tipped 1D ZnO nanowires of average diameter 120 nm and length ∼5-6 µm were randomly grown over an ITO coated glass substrate. The turn-on field (E on) of 1.56 V µm-1 required to draw a current density of 10 µA cm-2 from these spitzer shaped ZnO nanowires is significantly lower than that of pristine and doped ZnO nanostructures, and MoS2@TiO2 heterostructure based FE devices. The orthodoxy test that was performed confirms the feasibility of a field enhancement factor (ß FE) of 3924 for ZnO/ITO emitters. The enhancement in FE behavior can be attributed to the spitzer shaped nanotips, sharply pointed nanotips and individual dispersion of the ZnO nanowires. The ZnO/ITO emitters exhibited very stable electron emission with average current fluctuations of ±5%. Our investigations suggest that the spitzer shaped ZnO nanowires have potential for further improving in electron emission and other functionalities after forming tunable nano-hetero-architectures with metal or conducting materials.

12.
ACS Omega ; 2(6): 2925-2934, 2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31457627

RESUMO

We report comparative field electron emission (FE) studies on a large-area array of two-dimensional MoS2-coated @ one-dimensional (1D) brookite (ß) TiO2 nanorods synthesized on Si substrate utilizing hot-filament metal vapor deposition technique and pulsed laser deposition method, independently. The 10 nm wide and 760 nm long 1D ß-TiO2 nanorods were coated with MoS2 layers of thickness ∼4 (±2), 20 (±3), and 40 (±3) nm. The turn-on field (E on) of 2.5 V/µm required to a draw current density of 10 µA/cm2 observed for MoS2-coated 1D ß-TiO2 nanorods emitters is significantly lower than that of doped/undoped 1D TiO2 nanostructures, pristine MoS2 sheets, MoS2@SnO2, and TiO2@MoS2 heterostructure-based field emitters. The orthodoxy test confirms the viability of the field emission measurements, specifically field enhancement factor (ßFE) of the MoS2@TiO2/Si emitters. The enhanced FE behavior of the MoS2@TiO2/Si emitter can be attributed to the modulation of the electronic properties due to heterostructure and interface effects, in addition to the high aspect ratio of the vertically aligned TiO2 nanorods. Furthermore, these MoS2@TiO2/Si emitters exhibit better emission stability. The results obtained herein suggest that the heteroarchitecture of MoS2@ß-TiO2 nanorods holds the potential for their applications in FE-based nanoelectronic devices such as displays and electron sources. Moreover, the strategy employed here to enhance the FE behavior via rational design of heteroarchitecture structure can be further extended to improve other functionalities of various nanomaterials.

13.
ACS Appl Mater Interfaces ; 8(15): 9872-80, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-27028491

RESUMO

We synthesized unique one-dimensional (1D) nanorods and two-dimensional (2D) thin-films of NiO on indium-tin-oxide thin-films using a hot-filament metal-oxide vapor deposition technique. The 1D nanorods have an average width and length of ∼100 and ∼500 nm, respectively, and the densely packed 2D thin-films have an average thickness of ∼500 nm. The 1D nanorods perform as parallel units for charge storing. However, the 2D thin-films act as one single unit for charge storing. The 2D thin-films possess a high specific capacitance of ∼746 F/g compared to 1D nanorods (∼230 F/g) using galvanostatic charge-discharge measurements at a current density of 3 A/g. Because the 1D NiO nanorods provide more plentiful surface areas than those of the 2D thin-films, they are fully active at the first few cycles. However, the capacitance retention of the 1D nanorods decays faster than that of the 2D thin-films. Also, the 1D NiO nanorods suffer from instability due to the fast electrochemical dissolution and high nanocontact resistance. Electrochemical impedance spectroscopy verifies that the low dimensionality of the 1D NiO nanorods induces the unavoidable effects that lead them to have poor supercapacitive performances. On the other hand, the slow electrochemical dissolution and small contact resistance in the 2D NiO thin-films favor to achieve high specific capacitance and great stability.

14.
Sci Rep ; 4: 6967, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25382186

RESUMO

We utilized a thermal radiation method to synthesize semiconducting hollow ZnO nanoballoons and metal-semiconductor concentric solid Zn/ZnO nanospheres from metallic solid Zn nanospheres. The chemical properties, crystalline structures, and photoluminescence mechanisms for the metallic solid Zn nanospheres, semiconducting hollow ZnO nanoballoons, and metal-semiconductor concentric solid Zn/ZnO nanospheres are presented. The PL emissions of the metallic Zn solid nanospheres are mainly dependent on the electron transitions between the Fermi level (E(F)) and the 3d band, while those of the semiconducting hollow ZnO nanoballoons are ascribed to the near band edge (NBE) and deep level electron transitions. The PL emissions of the metal-semiconductor concentric solid Zn/ZnO nanospheres are attributed to the electron transitions across the metal-semiconductor junction, from the E(F) to the valence and 3d bands, and from the interface states to the valence band. All three nanostructures are excellent room-temperature light emitters.

15.
Sci Rep ; 3: 3070, 2013 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-24166185

RESUMO

We utilized a metal tantalum (Ta) ball-probe to measure the electrical properties of vertical-aligned one-dimensional (1D) nickel-oxide (NiO) nanorods. The 1D NiO nanorods (on average, ~105 nm wide and ~700 nm long) are synthesized using the hot-filament metal-oxide vapor deposition (HFMOVD) technique, and they are cubic phased and have a wide bandgap of 3.68 eV. When the 1D NiO nanorods are arranged in a large-area array in ohmic-contact with the Ta ball-probe, they acted as many parallel resistors. By means of a rigorous calculation, we can easily acquire the average resistance RNR and resistivity ρNR of a single NiO nanorod, which were approximately 3.1 × 10(13) Ω and 4.9 × 10(7) Ω.cm, respectively.

16.
J Nanosci Nanotechnol ; 13(2): 888-93, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23646536

RESUMO

An oscillating magnetic tip can be used to induce the striped magnetic ripple pattern with alternating up-and-down striped magnetic domains on a ferromagnetic La0.7Sr0.3MnO3 (LSMO) thin film surface. Magnetic force microscopy (MFM) images show that the surface magnetic domains (SMDs) can be aligned in a well-ordered alternating up-and-down c(2 x 2) structure on the stripe magnetic domains, indicating that the oscillating magnetic tip turns the ferromagnetic LSMO surface into a canted antiferromagnetic state. The orientation of the SMDs is determined by their discrete phase distribution. A three-dimensional (3D) SMD orientation model is built to understand dynamic behavior of the SMDs.

17.
J Nanosci Nanotechnol ; 13(2): 1001-5, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23646559

RESUMO

We describe here the synthesis of a large-area Ta2O5 nanodot array by utilizing the hot filament metal vapor deposition technique. The Ta2O5 nanodots arranged in a large-area array on a Si wafer had an average diameter of -8 nm. X-ray photoemission spectroscopy (XPS) revealed the stoichiometric Ta and O compositions of the Ta2O5 nanodots. Raman spectroscopy showed the Ta2O5 nanodots to be of orthorhombic (beta) crystal. Photoluminescence (PL) spectroscopy showed the green and red light emissions of the beta-Ta2O5 nanodots at room temperature.

18.
Dalton Trans ; 41(20): 6130-6, 2012 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-22491525

RESUMO

Lead sulphide (PbS) quantum dot (QD) sensitized anatase TiO(2) nanocorals (TNC) were synthesized by SILAR and hydrothermal techniques. The TNC, PbS and PbS-TNC samples were characterized by optical absorption, XRD, FT-IR, FESEM and XPS. The results show that PbS QDs are coated on the TNCs, the optical absorption is found to be enhanced and the band edge is shifted to ~693 nm as compared with plain TNCs at 340 nm. The PbS-TNC sample exhibits an improved photoelectrochemical performance with a maximum short circuit current (J(sc)) of 3.84 mA cm(-2). The photocurrent density was found to be enhanced 2 fold, as compared with those of the bare PbS photoelectrode. The total power conversion efficiency of the PbS-TNC electrodes is 1.23%.

19.
Microsc Microanal ; 17(6): 944-9, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22008643

RESUMO

Atomic force microscopy probe-induced large-area ultrathin SiO(x) (x ≡ O/Si content ratio and x > 2) protrusions only a few nanometers high on a SiO(2) layer were characterized by scanning photoemission microscopy (SPEM) and X-ray photoemission spectroscopy (XPS). SPEM images of the large-area ultrathin SiO(x) protrusions directly showed the surface chemical distribution and chemical state specifications. The peak intensity ratios of the XPS spectra of the large-area ultrathin SiO(x) protrusions provided the elemental quantification of the Si 2p core levels and Si oxidation states (such as the Si(4+), Si(3+), Si(2+), and Si(1+) species). The O/Si content ratio (x) was evidently determined by the height of the large-area ultrathin SiO(x) protrusions.


Assuntos
Técnicas Eletroquímicas/métodos , Microscopia de Força Atômica/métodos , Nanotecnologia , Semicondutores , Dióxido de Silício/química , Teste de Materiais , Microscopia de Força Atômica/instrumentação , Oxirredução , Espectroscopia Fotoeletrônica , Propriedades de Superfície , Temperatura
20.
Nanoscale ; 3(10): 4339-45, 2011 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-21904750

RESUMO

We synthesized two-dimensional (2D) Zn hexagonal nanoplates using the thermal metal-vapor deposition technique. An increase and decrease in the surface area and thickness of the 2D Zn hexagonal nanoplates were shown with elevated annealing temperatures, indicating their sizes to be controlled using the annealing treatment. X-Ray diffractometry (XRD) studies revealed the crystalline nature of the 2D Zn hexagonal nanoplates and the diffraction intensity of the (002) lattice plane, which increased parabolically with elevated annealing temperatures.


Assuntos
Nanopartículas Metálicas/química , Zinco/química , Nanopartículas Metálicas/ultraestrutura , Tamanho da Partícula , Propriedades de Superfície , Temperatura , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...