Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Small ; 14(15): e1703989, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29493087

RESUMO

Recombination of photogenerated electron-hole pairs is extremely limited in the practical application of photocatalysis toward solving the energy crisis and environmental pollution. A rational design of the cascade system (i.e., rGO/Bi2 WO6 /Au, and ternary composites) with highly efficient charge carrier separation is successfully constructed. As expected, the integrated system (rGO/Bi2 WO6 /Au) shows enhanced photocatalytic activity compared to bare Bi2 WO6 and other binary composites, and it is proved in multiple electron transfer (MET) behavior, namely a cooperative electron transfer (ET) cascade effect. Simultaneously, UV-vis/scanning electrochemical microscopy is used to directly identify MET kinetic information through an in situ probe scanning technique, where the "fast" and "slow" heterogeneous ET rate constants (Keff ) of corresponding photocatalysts on the different interfaces are found, which further reveals that the MET behavior is the prime source for enhanced photocatalytic activity. This work not only offers a new insight to study catalytic performance during photocatalysis and electrocatalysis systems, but also opens up a new avenue to design highly efficient catalysts in photocatalytic CO2 conversion to useful chemicals and photovoltaic devices.

2.
Anal Chem ; 90(7): 4871-4877, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29506383

RESUMO

How to improve the accuracy of target detection substance in low-content and complex of real sample, which is still a major challenge in the analysis field. There is no doubt that the internal standard method is the best choice in the analysis methods. The internal standard method of ECL strategy can furnish more accurate detection results in the changeable complex environment, and it can dispel the primary vaguest interference in the system through the self-calibration of two emission spectra. Herein, we effectually explored a strong and stable bimodal ECL system based on graphitic carbon nitride quantum dots (g-CNQDs) as single luminophore in the presence of double coreactants potassium persulfate (K2S2O8) and tetrabutylammonium bromide (TBAB) under the optimized conditions. ECL-1 at 2.82 V and ECL-2 at 1.73 V were observed when the potential was scanned between -3 and 3 V at the scan rate of 0.2 V·s-1. The ECL-1 was responding to the analyte, that is, ascorbic acid (AA) and the ECL-2 was not for a certain concentration of AA; hence, the developed bimodal ECL system was used as internal standard method for quantitative AA in human serum due to the different sensitivity of the double-peak ECL signals to the target analytes. The linear relationships were obtained based on the ln I (ECL-1/ECL-2) against the concentration of AA in the concentration range of 3.5 to 330 nM, with a detection limit of 110 pM (S/N = 3).

3.
Talanta ; 178: 962-969, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29136924

RESUMO

The GO-COOH/AuNPs/ZnAPTPP nanocomposites were constructed using zinc monoamino porphyrin (ZnAPTPP) through π-π conjugation with carboxylated graphene oxide (GO-COOH) loaded with Au nanoparticles (AuNPs). Prepared materials were characterized by 1H NMR spectra, UV-vis absorption spectroscopy and electrochemical impedance spectroscopy. ITO electrode surface was modified with the prepared nanocomposites showed a good photocurrent response when the bias potential, -0.1V was applied. Nanocomposites modified ITO electrode exhibited good photo-response to the 4-nitrophenol (4-NP). ZnAPTPP were excited from HOMO to LUMO under light irradiation, the photoexcited electrons injected into the conduction band of GO-COOH, and then transferred to AuNPs further to the ITO. The presence of GO-COOH and AuNPs improved the separation of photogenerated charges due to their synergetic effect and excellent conductivity. Externally added 4-NP scavenges the photogenerated holes i.e. it acts as a sacrificial electron donor thereby it enhances the photocurrent of the system. Based on this interaction, a novel method for photoelectrochemical detection of 4-NP was developed with a linear range from 0.1 to 15nmol/L (r = 0.996) and detection limit of 0.04nmol/L (S/N = 3). Proposed method is simple and sensitive and this was successfully applied for the quantification 4-NP in river water sample matrices.

4.
J Phys Chem B ; 121(38): 9045-9051, 2017 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-28850234

RESUMO

Almost all life activities involve the process of multistep electron transfer (ET) which occurs on biomembrane. Metalloporphyrins (MTPPs) are a class of molecules which are closely related to life course. Here, the n-step (n = 1, 2) ET behaviors controlled by different metal ions in porphyrin cores were investigated by thin-layer cyclic voltammetry (TLCV). The bimolecular ET was reacted between the MTPP (M = Fe, Zn, Co, Cu, Ni) and Fe(CN)64- in nitrobenzene and aqueous phase, respectively, and the interface between nitrobenzene and aqueous phase was considered as a bionic membrane. The thin-layer theory, which has been revised, was used to calculate the kinetic constants for each step electron transfer reactions. It was shown that the kinetic data were affected dramatically by the different coordinated ions in porphyrin complexes.


Assuntos
Metaloporfirinas/química , Elementos de Transição/química , Técnicas Eletroquímicas/instrumentação , Transporte de Elétrons , Desenho de Equipamento , Íons/química , Cinética , Membranas Artificiais , Nitrobenzenos/química
5.
Phys Chem Chem Phys ; 19(28): 18232-18242, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28682381

RESUMO

J- and H-aggregates of zinc tetraphenylporphyrin (ZnTPP) on carbon nanotube films (CNTFs) were prepared using the mixed solvent method. This resulted in completely different structures, such as the four-leaf clover and flower, on the CNTF, which were observed by recording SEM images. Characteristic changes in the electronic spectra of the ZnTPP monomer appeared when it underwent J- and H-aggregation. The measured photocurrent significantly varied for the same molecule when it was aggregated in two different ways on ITO and ITO/CNTF. The electron recombination resistance of the two aggregates, which was investigated using electrochemical impedance spectroscopy, was also different. The photocatalytic efficiency of the J- and H-aggregates was examined by performing methylene blue dye decoloration studies. In addition, a scanning electrochemical microscope was used to investigate the photoinduced charge transfer kinetics of the J- and H-aggregates at the electrode/electrolyte interface as a fresh attempt. The heterogeneous charge transfer constants for the J- and H-aggregates in the presence of light at varied intensities were calculated. Thereby, striking differences in the photophysical, photocatalytic, and photoelectrochemical properties of the J- and H-aggregates were visualized throughout our studies.

6.
Anal Bioanal Chem ; 408(25): 7155-63, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27314850

RESUMO

The cathodic electrochemiluminescence (ECL) behavior of meso-tetra(4-sulfonatophenyl)porphyrin (TSPP) with potassium peroxydisulfate (K2S2O8) as the coreactant in aqueous solution with strong and stable emission was exploited to determine Cu(2+) down to nanomolar concentration. Two possible reaction mechanisms have been proposed to understand the generation of ECL by the TSPP/K2S2O8 system. The effects of the concentration of TSPP and K2S2O8, pH of the medium, and scan rate on the ECL intensity were studied in detail. The ECL intensity was efficiently quenched by trace amounts of Cu(2+). This phenomenon was used to develop a new method, which can offer rapid, reliable, and selective detection of Cu(2+). Under the optimum conditions, plots of the ECL of the TSPP/K2S2O8 system versus the concentration of Cu(2+) are linear in the range of 5 to 160 nM with a detection limit of 1.56 nM (S/N = 3). The proposed ECL sensor was successfully applied for analysis of tap and river water samples. It is anticipated that TSPP could be a new class of promising luminescent agent for ECL sensors. Graphical Abstract A two-step cathodic elelctrochemiluminescence (ECL) behavior of TSPP/K2S2O8 system in the aqueous solution and Cu(2+) determination using the same.

7.
ScientificWorldJournal ; 2012: 152016, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22619597

RESUMO

A simple cloud point extraction protocol has been proposed for the quantification of sulfide at trace level. The method is based on the reduction of iron (III) to iron (II) by the sulfide and the subsequent complexation of metal ion with nitroso-R salt in alkaline medium. The resulting green-colored complex was extracted through cloud point formation using cationic surfactant, that is, cetylpyridinium chloride, and the obtained surfactant phase was homogenized by ethanol before its absorbance measurement at 710 nm. The reaction variables like metal ion, ligand, surfactant concentration, and medium pH on the cloud point extraction of the metal-ligand complex have been optimized. The interference effect of the common anions and cations was studied. The proposed method has been successfully applied to quantify the trace level sulfide in the leachate samples of the landfill and water samples from bore wells and ponds. The validity of the proposed method has been studied by spiking the samples with known quantities of sulfide as well as comparing with the results obtained by the standard method.


Assuntos
Micelas , Sulfetos/análise , Centrifugação , Ácido Edético/química , Concentração de Íons de Hidrogênio , Limite de Detecção , Tensoativos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA