Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Dev Nutr ; 7(12): 102038, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38162999

RESUMO

Background: The effects of supplementation with L-arginine (L-arg), the precursor of nitric oxide (NO), on vascular and cardiometabolic health have largely been explored. Whether other mechanisms of the action of L-arg exist remains unknown, as arginine metabolism is complicated. Objective: We aimed to characterize the effect of low dose L-arg supplementation on overall human metabolism both in a fasting state and in response to an allostatic stress. Methods: In a randomized, double-blind, crossover study, 32 healthy overweight adults (mean age 45 y) with cardiometabolic risk (fasting plasma triglycerides >150 mg/dL; waist circumference >94 cm [male] or >80 cm [female]) were treated with 1.5 g sustained-release L-arg 3 times/d (4.5 g/d) or placebo for 4 wk. On the last day of treatment, volunteers consumed a high-fat meal challenge (900 kcal, 80% as fat, 13% as carbohydrate, and 7% as protein). Plasma was collected at fasting, 2, 4, and 6 h after the challenge, and the metabolome was analyzed by high-resolution liquid chromatography-mass spectrometry. Metabolic profiles were analyzed using linear mixed models-principal component analysis. Results: The challenge meal explained most of the changes in the metabolome. The overall effect of L-arg supplementation significantly explained 0.5% of the total variance, irrespective of the response to the challenge meal (P < 0.05). Among the metabolites that explain most of the L-arg effect, we found many amino acids, including branched-chain amino acids, that were decreased by L-arg supplementation. L-arg also decreased trimethylamine N-oxide (TMAO). Other changes suggest that L-arg increased methyl demand. Conclusions: Analysis of the effect of 4 wk of L-arg supplementation on the metabolome reveals important effects on methyl balance and gut microbiota activity, such as a decrease in TMAO. Further studies are needed to investigate those mechanisms and the implications of these changes for long-term health.This trial was registered at clinicaltrials.gov as NCT02354794.

2.
J Nutr ; 146(7): 1322-9, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27281799

RESUMO

BACKGROUND: Oral l-arginine supplements can have a beneficial effect on nitric oxide (NO)-related functions when subjects have cardiovascular disease risk factors. OBJECTIVE: The study was designed to determine the utilization for NO synthesis of oral l-arginine as a function of the cardiometabolic risk and the speed of absorption by comparing immediate-release arginine (IR-Arg), as in supplements, and sustained-release arginine (SR-Arg), which mimics the slow release of dietary arginine. METHODS: In a randomized, single-blind, 2-period crossover, controlled trial (1 wk of treatment, >2 wk of washout), using [(15)N-(15)N-(guanidino)]-arginine for the first morning dose, we compared the bioavailability (secondary outcome) and utilization for NO synthesis (primary outcome) of 1.5 g IR- and SR-Arg 3 times/d in 12 healthy overweight [body mass index (BMI; in kg/m(2)): 25-30] adults with the hypertriglyceridemic waist phenotype [HTW; plasma triglycerides (TGs): >150 mg/dL; waist circumference: >94 cm (men) or >80 cm (women)] and 15 healthy control adults (CON; BMI: 18.5-25; no elevated TGs and waist circumference). RESULTS: Plasma oral arginine areas under the curve were lower after supplementation with SR-Arg than with IR-Arg (112 ± 52.3 and 142 ± 50.8 µmol ⋅ h/L; P < 0.01). The utilization of oral arginine for NO synthesis was 58% higher in HTW subjects than in CON subjects and higher with SR-Arg than with IR-Arg (P < 0.05 both), particularly in HTW subjects (group-by-treatment interaction, P < 0.05). In HTW subjects administered the SR form, utilization for NO synthesis was 32% higher than with the IR form and 87% higher than in CON subjects who were administered the SR form. CONCLUSION: In overweight adults with the HTW phenotype, a slow- compared with a fast-release form of oral arginine markedly favors the utilization of arginine for NO synthesis. The utilization of low-dose, slow-release arginine for NO synthesis is higher in overweight adults with the HTW phenotype than in healthy controls, suggesting that the sensitivity of NO synthesis to the dietary arginine supply increases with cardiometabolic risk. The trial was registered at clinicaltrials.gov as NCT02352740.


Assuntos
Arginina/administração & dosagem , Arginina/farmacologia , Doenças Cardiovasculares , Doenças Metabólicas , Óxido Nítrico/biossíntese , Sobrepeso/metabolismo , Adolescente , Adulto , Arginina/farmacocinética , Disponibilidade Biológica , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Estudos Cross-Over , Feminino , Humanos , Masculino , Doenças Metabólicas/epidemiologia , Doenças Metabólicas/etiologia , Pessoa de Meia-Idade , Sobrepeso/complicações , Fatores de Risco , Adulto Jovem
3.
J Nutr ; 146(7): 1330-40, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27281800

RESUMO

BACKGROUND: Vascular endothelial dysfunction, the hallmark of early atherosclerosis, is induced transiently by a high-fat meal. High doses of free l-arginine supplements reduce fasting endothelial dysfunction. OBJECTIVE: We sought to determine the effects of a low dose of a sustained-release (SR) l-arginine supplement on postprandial endothelial function in healthy overweight adults with cardiometabolic risk factors and to investigate whether this effect may vary by baseline arginine status. METHODS: In a randomized, double-blind, 2-period crossover, placebo-controlled trial (4-wk treatment, 4-wk washout), we compared the effects of 1.5 g SR-l-arginine 3 times/d (4.5 g/d) with placebo in 33 healthy overweight adults [body mass index (BMI, in kg/m(2)): 25 to >30] with the hypertriglyceridemic waist (HTW) phenotype [plasma triglycerides > 150 mg/dL; waist circumference > 94 cm (men) or > 80 cm (women)]. The main outcome variable tested was postprandial endothelial function after a high-fat meal (900 kcal), as evaluated by use of flow-mediated dilation (FMD) and Framingham reactive hyperemia index (fRHI), after each treatment. By use of subgroup analysis, we determined whether the effect was related to the baseline plasma arginine concentration. RESULTS: In the total population, the effects of SR-arginine supplementation on postprandial endothelial function were mixed and largely varied with baseline fasting arginine concentration (P-interaction < 0.05). In the lower half of the population (below the median of 78.2 µmol arginine/L plasma), but not the upper half, SR-arginine supplementation attenuated the postprandial decrease in both FMD (29% decrease with SR-arginine compared with 50% decrease with placebo) and fRHI (5% increase with SR-arginine compared with 49% decrease with placebo), resulting in significantly higher mean ± SEM values with SR-arginine (FMD: 4.0% ± 0.40%; fRHI: 0.41 ± 0.069) than placebo (FMD: 2.9% ± 0.31%; fRHI: 0.21 ± 0.060) at the end of the postprandial period (P < 0.05). CONCLUSIONS: Supplementation with low-dose SR-arginine alleviates postprandial endothelial dysfunction in healthy HTW adults when the baseline plasma arginine concentration is relatively low. The benefits of arginine supplementation may be linked to a lower ability to mobilize endogenous arginine for nitric oxide synthesis during a postprandial challenge. This trial was registered at clinicaltrials.gov as NCT02354794.


Assuntos
Arginina/administração & dosagem , Arginina/sangue , Doenças Cardiovasculares , Endotélio Vascular/metabolismo , Doenças Metabólicas , Sobrepeso/metabolismo , Adulto , Artérias/efeitos dos fármacos , Artérias/fisiologia , Estudos Cross-Over , Suplementos Nutricionais , Jejum , Feminino , Humanos , Lipídeos/sangue , Masculino , Manometria , Pessoa de Meia-Idade , Período Pós-Prandial , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...