Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Biochem Sci ; 26(12): 705-9, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11738593

RESUMO

Eukaryotic initiation factor 1A (eIF1A) and the GTPase IF2/eIF5B are the only universally conserved translation initiation factors. Recent structural, biochemical and genetic data indicate that these two factors form an evolutionarily conserved structural and functional unit in translation initiation. Based on insights gathered from studies of the translation elongation factor GTPases, we propose that these factors occupy the aminoacyl-tRNA site (A site) on the ribosome, and promote initiator tRNA binding and ribosomal subunit joining. These processes yield a translationally competent ribosome with Met-tRNA in the ribosomal peptidyl-tRNA site (P site), base-paired to the AUG start codon of a mRNA.


Assuntos
Fator de Iniciação 1 em Eucariotos , Iniciação Traducional da Cadeia Peptídica , Fatores de Iniciação de Peptídeos/fisiologia , Ribossomos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/fisiologia , Sítios de Ligação , Fator de Iniciação 5 em Eucariotos , Evolução Molecular , Guanosina Trifosfato/metabolismo , Humanos , Modelos Moleculares , Fatores de Iniciação de Peptídeos/química , Fatores de Iniciação de Peptídeos/genética , Estrutura Terciária de Proteína , RNA de Transferência de Metionina/metabolismo , Alinhamento de Sequência
2.
EMBO J ; 20(14): 3728-37, 2001 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-11447114

RESUMO

The protein kinase PKR (dsRNA-dependent protein kinase) phosphorylates the eukaryotic translation initiation factor eIF2alpha to downregulate protein synthesis in virus-infected cells. Two double-stranded RNA binding domains (dsRBDs) in the N-terminal half of PKR are thought to bind the activator double-stranded RNA, mediate dimerization of the protein and target PKR to the ribosome. To investigate further the importance of dimerization for PKR activity, fusion proteins were generated linking the PKR kinase domain to heterologous dimerization domains. Whereas the isolated PKR kinase domain (KD) was non-functional in vivo, expression of a glutathione S-transferase-KD fusion, or co-expression of KD fusions containing the heterodimerization domains of the Xlim-1 and Ldb1 proteins, restored PKR activity in yeast cells. Finally, coumermycin-mediated dimerization of a GyrB-KD fusion protein increased eIF2alpha phosphorylation and inhibited reporter gene translation in mammalian cells. These results demonstrate the critical importance of dimerization for PKR activity in vivo, and suggest that a primary function of double-stranded RNA binding to the dsRBDs of native PKR is to promote dimerization and activation of the kinase domain.


Assuntos
RNA de Cadeia Dupla/metabolismo , eIF-2 Quinase/metabolismo , Células 3T3 , Animais , Sítios de Ligação , Dimerização , Ativação Enzimática , Camundongos , Saccharomyces cerevisiae/enzimologia , eIF-2 Quinase/química
3.
Mol Cell Biol ; 21(15): 4900-8, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11438647

RESUMO

The 3' poly(A) structure improves translation of a eukaryotic mRNA by 50-fold in vivo. This enhancement has been suggested to be due to an interaction of the poly(A) binding protein, Pab1p, with eukaryotic translation initiation factor 4G (eIF4G). However, we find that mutation of eIF4G eliminating its interaction with Pab1p does not diminish the preference for poly(A)(+) mRNA in vivo, indicating another role for poly(A). We show that either the absence of Fun12p (eIF5B), or a defect in eIF5, proteins involved in 60S ribosomal subunit joining, specifically reduces the translation of poly(A)(+) mRNA, suggesting that poly(A) may have a role in promoting the joining step. Deletion of two nonessential putative RNA helicases (genes SKI2 and SLH1) makes poly(A) dispensable for translation. However, in the absence of Fun12p, eliminating Ski2p and Slh1p shows little enhancement of expression of non-poly(A) mRNA. This suggests that Ski2p and Slh1p block translation of non-poly(A) mRNA by an effect on Fun12p, possibly by affecting 60S subunit joining.


Assuntos
Proteínas Fúngicas/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Poli A/genética , Biossíntese de Proteínas , RNA Helicases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae , RNA Helicases DEAD-box , Eletroporação , Fator de Iniciação 5 em Eucariotos , Deleção de Genes , Genes Reporter , Cinética , Modelos Biológicos , Mutação , Proteínas de Ligação a Poli(A) , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Supressão Genética , Fatores de Tempo
4.
Mol Cell Biol ; 21(15): 5018-30, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11438658

RESUMO

Translation initiation factor 2 (eIF2) is a heterotrimeric protein that transfers methionyl-initiator tRNA(Met) to the small ribosomal subunit in a ternary complex with GTP. The eIF2 phosphorylated on serine 51 of its alpha subunit [eIF2(alphaP)] acts as competitive inhibitor of its guanine nucleotide exchange factor, eIF2B, impairing formation of the ternary complex and thereby inhibiting translation initiation. eIF2B is comprised of catalytic and regulatory subcomplexes harboring independent eIF2 binding sites; however, it was unknown whether the alpha subunit of eIF2 directly contacts any eIF2B subunits or whether this interaction is modulated by phosphorylation. We found that recombinant eIF2alpha (glutathione S-transferase [GST]-SUI2) bound to the eIF2B regulatory subcomplex in vitro, in a manner stimulated by Ser-51 phosphorylation. Genetic data suggest that this direct interaction also occurred in vivo, allowing overexpressed SUI2 to compete with eIF2(alphaP) holoprotein for binding to the eIF2B regulatory subcomplex. Mutations in SUI2 and in the eIF2B regulatory subunit GCD7 that eliminated inhibition of eIF2B by eIF2(alphaP) also impaired binding of phosphorylated GST-SUI2 to the eIF2B regulatory subunits. These findings provide strong evidence that tight binding of phosphorylated SUI2 to the eIF2B regulatory subcomplex is crucial for the inhibition of eIF2B and attendant downregulation of protein synthesis exerted by eIF2(alphaP). We propose that this regulatory interaction prevents association of the eIF2B catalytic subcomplex with the beta and gamma subunits of eIF2 in the manner required for GDP-GTP exchange.


Assuntos
Fator de Iniciação 2B em Eucariotos/química , Fator de Iniciação 2B em Eucariotos/metabolismo , Fatores de Iniciação de Peptídeos/química , Fatores de Iniciação de Peptídeos/metabolismo , Sítios de Ligação , Catálise , Genótipo , Glutationa Transferase/metabolismo , Modelos Biológicos , Mutação , Níquel/metabolismo , Fosforilação , Plasmídeos/metabolismo , Fator de Iniciação 2 em Procariotos , Ligação Proteica , Biossíntese de Proteínas , Estrutura Secundária de Proteína , RNA de Transferência de Metionina/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/metabolismo
5.
J Biol Chem ; 276(33): 30753-60, 2001 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-11408481

RESUMO

Phosphorylation of the alpha-subunit of eukaryotic initiation factor 2 (eIF2alpha) is a conserved mechanism regulating protein synthesis in response to various stresses. A screening for negative factors in yeast salt stress tolerance has led to the identification of Gcn2p, the single yeast eIF2alpha kinase that is activated by amino acid starvation in the general amino acid control response. Mutation of other components of this regulatory circuit such as GCN1 and GCN3 also resulted in improved NaCl tolerance. The gcn2 phenotype was not accompanied by changes in sodium or potassium homeostasis. NaCl induced a Gcn2p-dependent phosphorylation of eIF2alpha and translational activation of Gcn4p, the transcription factor that mediates the general amino acid control response. Mutations that activate Gcn4p function, such as gcd7-201, cpc2, and deletion of the translational regulatory region of the GCN4 gene, also cause salt sensitivity. It can be postulated that sodium activation of the Gcn2p pathway has toxic effects on growth under NaCl stress and that this novel mechanism of sodium toxicity may be of general significance in eukaryotes.


Assuntos
Proteínas de Ligação a DNA , Proteínas Quinases/fisiologia , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/efeitos dos fármacos , Sódio/toxicidade , Aminoácidos/farmacologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 2B em Eucariotos , Proteínas Fúngicas/fisiologia , Nucleotidases/genética , Fatores de Alongamento de Peptídeos , Fosforilação , Biossíntese de Proteínas , Proteínas Serina-Treonina Quinases , Saccharomyces cerevisiae/metabolismo , Serina/metabolismo
6.
J Biol Chem ; 276(27): 24946-58, 2001 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-11337501

RESUMO

Protein kinase PKR is activated by double-stranded RNA (dsRNA) and phosphorylates translation initiation factor 2alpha to inhibit protein synthesis in virus-infected mammalian cells. PKR contains two dsRNA binding motifs (DRBMs I and II) required for activation by dsRNA. There is strong evidence that PKR activation requires dimerization, but the role of dsRNA in dimer formation is controversial. By making alanine substitutions predicted to remove increasing numbers of side chain contacts between the DRBMs and dsRNA, we found that dimerization of full-length PKR in yeast was impaired by the minimal combinations of mutations required to impair dsRNA binding in vitro. Mutation of Ala-67 to Glu in DRBM-I, reported to abolish dimerization without affecting dsRNA binding, destroyed both activities in our assays. By contrast, deletion of a second dimerization region that overlaps the kinase domain had no effect on PKR dimerization in yeast. Human PKR contains at least 15 autophosphorylation sites, but only Thr-446 and Thr-451 in the activation loop were found here to be critical for kinase activity in yeast. Using an antibody specific for phosphorylated Thr-451, we showed that Thr-451 phosphorylation is stimulated by dsRNA binding. Our results provide strong evidence that dsRNA binding is required for dimerization of full-length PKR molecules in vivo, leading to autophosphorylation in the activation loop and stimulation of the eIF2alpha kinase function of PKR.


Assuntos
RNA de Cadeia Dupla/metabolismo , eIF-2 Quinase/metabolismo , Sequência de Aminoácidos , Dimerização , Eletroforese em Gel de Poliacrilamida , Ativação Enzimática , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Fosforilação , Plasmídeos , Poli I-C/metabolismo , Treonina/metabolismo , Leveduras/enzimologia , eIF-2 Quinase/genética
7.
J Biol Chem ; 276(17): 13727-37, 2001 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-11278865

RESUMO

We have previously reported a physical association between STAT1 and the protein kinase double-stranded RNA-activated protein kinase (PKR). PKR inhibited STAT1 function in a manner independent of PKR kinase activity. In this report, we have further characterized the properties of both molecules by mapping the sites of their interaction. A STAT1 mutant unable to interact with PKR displays enhanced interferon gamma (IFN-gamma)-induced transactivation capacity compared with STAT1. This effect appears to be mediated by the higher capacity of STAT1 mutant to heterodimerize with STAT3. Furthermore, expression of STAT1 mutant in STAT1(-/-) cells enhances both the antiviral and antiproliferative effects of IFNs as opposed to STAT1. We also provide evidence that STAT1 functions as an inhibitor of PKR in vitro and in vivo. That is, phosphorylation of eIF-2alpha is enhanced in STAT1(-/-) than STAT1(+/+) cells in vivo, and this correlates with higher activation capacity of PKR in STAT1(-/-) cells. Genetic experiments in yeast demonstrate the inhibition of PKR activation and eIF-2alpha phosphorylation by STAT1 but not by STAT1 mutant. These data substantiate our previous findings on the inhibitory effects of PKR on STAT1 and implicate STAT1 in translational control through the modulation of PKR activation and eIF-2alpha phosphorylation.


Assuntos
Antivirais/farmacologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Mutação , Transativadores/genética , Transativadores/metabolismo , eIF-2 Quinase/metabolismo , Aminoácidos/química , Sítios de Ligação , Divisão Celular/efeitos dos fármacos , Linhagem Celular , DNA/metabolismo , Proteínas de Ligação a DNA/química , Fator de Iniciação 2 em Eucariotos/metabolismo , Regulação da Expressão Gênica , Glutationa Transferase/metabolismo , Células HeLa , Humanos , Immunoblotting , Interferon gama/metabolismo , Mutagênese , Fosforilação , Plasmídeos/metabolismo , Testes de Precipitina , Ligação Proteica , Biossíntese de Proteínas , Fator de Transcrição STAT1 , Fatores de Tempo , Transativadores/química , Transcrição Gênica , Ativação Transcricional , Transfecção
9.
Cell ; 103(5): 781-92, 2000 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-11114334

RESUMO

X-ray structures of the universal translation initiation factor IF2/eIF5B have been determined in three states: free enzyme, inactive IF2/eIF5B.GDP, and active IF2/eIF5B.GTP. The "chalice-shaped" enzyme is a GTPase that facilitates ribosomal subunit joining and Met-tRNA(i) binding to ribosomes in all three kingdoms of life. The conserved core of IF2/eIF5B consists of an N-terminal G domain (I) plus an EF-Tu-type beta barrel (II), followed by a novel alpha/beta/alpha-sandwich (III) connected via an alpha helix to a second EF-Tu-type beta barrel (IV). Structural comparisons reveal a molecular lever, which amplifies a modest conformational change in the Switch 2 region of the G domain induced by Mg(2+)/GTP binding over a distance of 90 A from the G domain active center to domain IV. Mechanisms of GTPase function and ribosome binding are discussed.


Assuntos
Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Fatores de Iniciação de Peptídeos/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Ativação Enzimática , Escherichia coli/metabolismo , Fator de Iniciação 5 em Eucariotos , Guanina/metabolismo , Mathanococcus/química , Modelos Moleculares , Dados de Sequência Molecular , Fatores de Iniciação de Peptídeos/metabolismo , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
10.
Virology ; 276(2): 424-34, 2000 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-11040133

RESUMO

The interferon-induced protein kinase PKR is activated upon binding double-stranded RNA and phosphorylates the translation initiation factor eIF2alpha on Ser-51 to inhibit protein synthesis in virally infected cells. Swinepox virus C8L and vaccinia virus K3L gene products structurally resemble the amino-terminal third of eIF2alpha. We demonstrate that the C8L protein, like the K3L protein, can reverse the toxic effects caused by high level expression of human PKR in yeast cells. In addition, expression of either the K3L or C8L gene product was found to reverse the inhibition of reporter gene translation caused by PKR expression in mammalian cells. The inhibitory function of the K3L and C8L gene products in these assays was found to be critically dependent on residues near the carboxyl-termini of the proteins including a sequence motif shared among eIF2alpha and the C8L and K3L gene products. Thus, despite significant sequence differences both the C8L and K3L proteins function as pseudosubstrate inhibitors of PKR.


Assuntos
Suipoxvirus/genética , Proteínas Virais/genética , eIF-2 Quinase/antagonistas & inibidores , Células 3T3 , Sequência de Aminoácidos , Animais , Inibidores Enzimáticos/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Regulação da Expressão Gênica , Luciferases/genética , Camundongos , Dados de Sequência Molecular , Fosforilação , Biossíntese de Proteínas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Suipoxvirus/metabolismo , Transfecção , Proteínas Virais/química , Proteínas Virais/metabolismo , eIF-2 Quinase/metabolismo
11.
Mol Cell Biol ; 20(19): 7183-91, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-10982835

RESUMO

To initiate protein synthesis, a ribosome with bound initiator methionyl-tRNA must be assembled at the start codon of an mRNA. This process requires the coordinated activities of three translation initiation factors (IF) in prokaryotes and at least 12 translation initiation factors in eukaryotes (eIF). The factors eIF1A and eIF5B from eukaryotes show extensive amino acid sequence similarity to the factors IF1 and IF2 from prokaryotes. By a combination of two-hybrid, coimmunoprecipitation, and in vitro binding assays eIF1A and eIF5B were found to interact directly, and the eIF1A binding site was mapped to the C-terminal region of eIF5B. This portion of eIF5B was found to be critical for growth in vivo and for translation in vitro. Overexpression of eIF1A exacerbated the slow-growth phenotype of yeast strains expressing C-terminally truncated eIF5B. These findings indicate that the physical interaction between the evolutionarily conserved factors eIF1A and eIF5B plays an important role in translation initiation, perhaps to direct or stabilize the binding of methionyl-tRNA to the ribosomal P site.


Assuntos
Proteínas de Bactérias/fisiologia , Células Eucarióticas/metabolismo , Fator de Iniciação 1 em Eucariotos/fisiologia , Fator de Iniciação 2 em Eucariotos/fisiologia , Iniciação Traducional da Cadeia Peptídica/fisiologia , Fatores de Iniciação de Peptídeos/fisiologia , Células Procarióticas/metabolismo , Escherichia coli/genética , Fator de Iniciação 5 em Eucariotos , Substâncias Macromoleculares , Mimetismo Molecular , Fatores de Iniciação de Peptídeos/química , Fatores de Iniciação de Peptídeos/genética , Fenótipo , Fator de Iniciação 1 em Procariotos , Ligação Proteica , Estrutura Terciária de Proteína , RNA de Transferência/genética , RNA de Transferência de Metionina/genética , RNA de Transferência de Metionina/metabolismo , Proteínas Recombinantes de Fusão/fisiologia , Ribossomos/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Especificidade da Espécie , Relação Estrutura-Atividade , Técnicas do Sistema de Duplo-Híbrido
12.
Nature ; 403(6767): 332-5, 2000 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-10659855

RESUMO

Initiation of eukaryotic protein synthesis begins with the ribosome separated into its 40S and 60S subunits. The 40S subunit first binds eukaryotic initiation factor (eIF) 3 and an eIF2-GTP-initiator transfer RNA ternary complex. The resulting complex requires eIF1, eIF1A, eIF4A, eIF4B and eIF4F to bind to a messenger RNA and to scan to the initiation codon. eIF5 stimulates hydrolysis of eIF2-bound GTP and eIF2 is released from the 48S complex formed at the initiation codon before it is joined by a 60S subunit to form an active 80S ribosome. Here we show that hydrolysis of eIF2-bound GTP induced by eIF5 in 48S complexes is necessary but not sufficient for the subunits to join. A second factor termed eIF5B (relative molecular mass 175,000) is essential for this process. It is a homologue of the prokaryotic initiation factor IF2 (re and, like it, mediates joining of subunits and has a ribosome-dependent GTPase activity that is essential for its function.


Assuntos
Iniciação Traducional da Cadeia Peptídica , Fatores de Iniciação de Peptídeos/metabolismo , Puromicina/análogos & derivados , Ribossomos/metabolismo , Sequência de Aminoácidos , Catálise , Códon de Iniciação , Fator de Iniciação 1 em Eucariotos/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 3 em Eucariotos , Fator de Iniciação 5 em Eucariotos , GTP Fosfo-Hidrolases/metabolismo , Guanosina Trifosfato/metabolismo , Guanilil Imidodifosfato/metabolismo , Humanos , Hidrólise , Dados de Sequência Molecular , Puromicina/biossíntese , RNA Mensageiro/metabolismo , Proteínas Recombinantes/metabolismo
13.
J Biol Chem ; 274(45): 32198-203, 1999 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-10542257

RESUMO

The family of eukaryotic initiation factor 2alpha (eIF2alpha) protein kinases plays an important role in regulating cellular protein synthesis under stress conditions. The mammalian kinases PKR and HRI and the yeast kinase GCN2 specifically phosphorylate Ser-51 on the alpha subunit of the translation initiation factor eIF2. By using an in vivo assay in yeast, the substrate specificity of these three eIF2alpha kinases was examined by substituting Ser-51 in eIF2alpha with Thr or Tyr. In yeast, phosphorylation of eIF2 inhibits general translation but derepresses translation of the GCN4 mRNA. All three kinases phosphorylated Thr in place of Ser-51 and were able to regulate general and GCN4-specific translation. In addition, both PKR and HRI were found to phosphorylate eIF2alpha-S51Y and stimulate GCN4 expression. Isoelectric focusing analysis of eIF2alpha followed by detection using anti-eIF2alpha and anti-phosphotyrosine-specific antibodies demonstrated that PKR and HRI phosphorylated eIF2alpha-S51Y on Tyr in vivo. These results provide new insights into the substrate recognition properties of the eIF2alpha kinases, and they are intriguing considering the potential for alternate substrates for PKR in cellular signaling and growth control pathways.


Assuntos
Fator de Iniciação 2 em Eucariotos/metabolismo , Serina/metabolismo , Treonina/metabolismo , Tirosina/metabolismo , eIF-2 Quinase/metabolismo , Alelos , Linhagem Celular , Fator de Iniciação 2 em Eucariotos/química , Humanos , Focalização Isoelétrica , Fosforilação , Biossíntese de Proteínas , Especificidade por Substrato
14.
Trends Biochem Sci ; 24(10): 398-403, 1999 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-10500305

RESUMO

Initiation of protein synthesis requires both an mRNA and the initiator methionyl (Met)-tRNA to be bound to the ribosome. Most mRNAs are recruited to the ribosome through recognition of the 5' m7G cap by a group of proteins referred to as the cap-binding complex or eIF4F. Evidence is accumulating that eIF4G, the largest subunit of the cap-binding complex, serves as a central adapter by binding to various translation factors and regulators. Other translation factors also have modular structures that facilitate multiple protein-protein interactions, which suggests that adapter functions are common among the translation initiation factors. By linking different regulatory domains to a conserved eIF2-kinase domain, cells adapt to stress and changing growth conditions by altering the translational capacity through phosphorylation of eIF2, which mediates the binding of the initiator Met-tRNA to the ribosome.


Assuntos
Biossíntese de Proteínas , Fator de Iniciação Eucariótico 4G , Estresse Oxidativo , Fatores de Iniciação de Peptídeos/fisiologia , eIF-2 Quinase/metabolismo
15.
Proc Natl Acad Sci U S A ; 96(8): 4342-7, 1999 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-10200264

RESUMO

Binding of initiator methionyl-tRNA to ribosomes is catalyzed in prokaryotes by initiation factor (IF) IF2 and in eukaryotes by eIF2. The discovery of both IF2 and eIF2 homologs in yeast and archaea suggested that these microbes possess an evolutionarily intermediate protein synthesis apparatus. We describe the identification of a human IF2 homolog, and we demonstrate by using in vivo and in vitro assays that human IF2 functions as a translation factor. In addition, we show that archaea IF2 can substitute for its yeast homolog both in vivo and in vitro. We propose a universally conserved function for IF2 in facilitating the proper binding of initiator methionyl-tRNA to the ribosomal P site.


Assuntos
Archaea/genética , Fator de Iniciação 2 em Eucariotos/química , Fator de Iniciação 2 em Eucariotos/genética , Fatores de Iniciação de Peptídeos , Sequência de Aminoácidos , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência Conservada , Humanos , Cinética , Dados de Sequência Molecular , Filogenia , Fator de Iniciação 2 em Procariotos , Biossíntese de Proteínas , Saccharomyces cerevisiae/genética
16.
Mol Cell Biol ; 18(12): 7304-16, 1998 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9819417

RESUMO

The human double-stranded RNA (dsRNA)-dependent protein kinase PKR inhibits protein synthesis by phosphorylating translation initiation factor 2alpha (eIF2alpha). Vaccinia virus E3L encodes a dsRNA binding protein that inhibits PKR in virus-infected cells, presumably by sequestering dsRNA activators. Expression of PKR in Saccharomyces cerevisiae inhibits protein synthesis by phosphorylation of eIF2alpha, dependent on its two dsRNA binding motifs (DRBMs). We found that expression of E3 in yeast overcomes the lethal effect of PKR in a manner requiring key residues (Lys-167 and Arg-168) needed for dsRNA binding by E3 in vitro. Unexpectedly, the N-terminal half of E3, and residue Trp-66 in particular, also is required for anti-PKR function. Because the E3 N-terminal region does not contribute to dsRNA binding in vitro, it appears that sequestering dsRNA is not the sole function of E3 needed for inhibition of PKR. This conclusion was supported by the fact that E3 activity was antagonized, not augmented, by overexpressing the catalytically defective PKR-K296R protein containing functional DRBMs. Coimmunoprecipitation experiments showed that a majority of PKR in yeast extracts was in a complex with E3, whose formation was completely dependent on the dsRNA binding activity of E3 and enhanced by the N-terminal half of E3. In yeast two-hybrid assays and in vitro protein binding experiments, segments of E3 and PKR containing their respective DRBMs interacted in a manner requiring E3 residues Lys-167 and Arg-168. We also detected interactions between PKR and the N-terminal half of E3 in the yeast two-hybrid and lambda repressor dimerization assays. In the latter case, the N-terminal half of E3 interacted with the kinase domain of PKR, dependent on E3 residue Trp-66. We propose that effective inhibition of PKR in yeast requires formation of an E3-PKR-dsRNA complex, in which the N-terminal half of E3 physically interacts with the protein kinase domain of PKR.


Assuntos
Inibidores Enzimáticos/farmacologia , Proteínas de Ligação a RNA/genética , Proteínas Virais/genética , eIF-2 Quinase/genética , Divisão Celular/genética , Dimerização , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Mutação/genética , Fosforilação , Ligação Proteica/genética , Proteínas Recombinantes de Fusão/genética , Ribossomos/genética , Saccharomyces cerevisiae/genética
17.
Proc Natl Acad Sci U S A ; 95(24): 14511-6, 1998 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-9826731

RESUMO

Protein synthesis (PS) has been considered essential to sustain mammalian life, yet was found to be virtually arrested for weeks in brain and other organs of the hibernating ground squirrel, Spermophilus tridecemlineatus. PS, in vivo, was below the limit of autoradiographic detection in brain sections and, in brain extracts, was determined to be 0.04% of the average rate from active squirrels. Further, it was reduced 3-fold in cell-free extracts from hibernating brain at 37 degreesC, eliminating hypothermia as the only cause for protein synthesis inhibition (active, 0.47 +/- 0.08 pmol/mg protein per min; hibernator, 0.16 +/- 0.05 pmol/mg protein per min, P < 0.001). PS suppression involved blocks of initiation and elongation, and its onset coincided with the early transition phase into hibernation. An increased monosome peak with moderate ribosomal disaggregation in polysome profiles and the greatly increased phosphorylation of eIF2alpha are both consistent with an initiation block in hibernators. The elongation block was demonstrated by a 3-fold increase in ribosomal mean transit times in cell-free extracts from hibernators (active, 2.4 +/- 0.7 min; hibernator, 7.1 +/- 1.4 min, P < 0.001). No abnormalities of ribosomal function or mRNA levels were detected. These findings implicate suppression of PS as a component of the regulated shutdown of cellular function that permits hibernating ground squirrels to tolerate "trickle" blood flow and reduced substrate and oxygen availability. Further study of the factors that control these phenomena may lead to identification of the molecular mechanisms that regulate this state.


Assuntos
Encéfalo/metabolismo , Hibernação/fisiologia , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Elongação Traducional da Cadeia Peptídica , Iniciação Traducional da Cadeia Peptídica , Biossíntese de Proteínas , Ribossomos/metabolismo , Adenosina Difosfato Ribose/metabolismo , Animais , Autorradiografia/métodos , Radioisótopos de Carbono , Fator de Iniciação 2 em Eucariotos/metabolismo , Leucina/metabolismo , Proteínas do Tecido Nervoso/isolamento & purificação , Fator 2 de Elongação de Peptídeos , Fatores de Alongamento de Peptídeos/metabolismo , Fosforilação , RNA Mensageiro/metabolismo , Sciuridae , Sensibilidade e Especificidade , Transcrição Gênica
19.
Science ; 280(5370): 1757-60, 1998 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-9624054

RESUMO

Delivery of the initiator methionine transfer RNA (Met-tRNAiMet) to the ribosome is a key step in the initiation of protein synthesis. Previous results have indicated that this step is catalyzed by the structurally dissimilar translation factors in prokaryotes and eukaryotes-initiation factor 2 (IF2) and eukaryotic initiation factor 2 (eIF2), respectively. A bacterial IF2 homolog has been identified in both eukaryotes and archaea. By using a combination of molecular genetic and biochemical studies, the Saccharomyces cerevisiae IF2 homolog is shown to function in general translation initiation by promoting Met-tRNAiMet binding to ribosomes. Thus, the mechanism of protein synthesis in eukaryotes and prokaryotes is more similar than was previously realized.


Assuntos
Proteínas de Ligação a DNA , Fatores de Iniciação de Peptídeos/metabolismo , Biossíntese de Proteínas , RNA de Transferência de Metionina/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Códon de Iniciação , Citoplasma/química , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 2 em Eucariotos/farmacologia , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Iniciação Traducional da Cadeia Peptídica , Fatores de Iniciação de Peptídeos/análise , Fatores de Iniciação de Peptídeos/genética , Fator de Iniciação 2 em Procariotos , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/metabolismo
20.
Proc Natl Acad Sci U S A ; 95(8): 4164-9, 1998 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-9539707

RESUMO

Phosphorylation of eukaryotic translation initiation factor 2alpha (eIF2alpha) is a common cellular mechanism to limit protein synthesis in stress conditions. Baculovirus PK2, which resembles the C-terminal half of a protein kinase domain, was found to inhibit both human and yeast eIF2alpha kinases. Insect cells infected with wild-type, but not pk2-deleted, baculovirus exhibited reduced eIF2alpha phosphorylation and increased translational activity. The negative regulatory effect of human protein kinase RNA-regulated (PKR), an eIF2alpha kinase, on virus production was counteracted by PK2, indicating that baculoviruses have evolved a unique strategy for disrupting a host stress response. PK2 was found in complex with PKR and blocked kinase autophosphorylation in vivo, suggesting a mechanism of kinase inhibition mediated by interaction between truncated and intact kinase domains.


Assuntos
Baculoviridae/enzimologia , Biossíntese de Proteínas , Proteínas Quinases/metabolismo , Proteínas/metabolismo , Proteínas Virais/metabolismo , eIF-2 Quinase/metabolismo , Animais , Linhagem Celular , Deleção de Genes , Vetores Genéticos , Fatores de Troca do Nucleotídeo Guanina , Humanos , Fosforilação , Reação em Cadeia da Polimerase , Proteínas Quinases/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Spodoptera , Transfecção , Proteínas Virais/genética , Replicação Viral , eIF-2 Quinase/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...