Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 304: 114261, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34923410

RESUMO

The European Union is currently in the process of transformation toward a circular economy model in which different areas of activity should be integrated for more efficient management of raw materials and waste. The wastewater sector has a great potential in this regard and therefore is an important element of the transformation process to the circular economy model. The targets of the circular economy policy framework such as resource recovery are tightly connected with the wastewater treatment processes and sewage sludge management. With this in view, the present study aims to review existing indicators on resource recovery that can enable efficient monitoring of the sustainable and circular solutions implemented in the wastewater sector. Within the reviewed indicators, most of them were focused on technological aspects of resource recovery processes such as nutrient removal efficiency, sewage sludge processing methods and environmental aspects as the pollutant share in the sewage sludge or its ashes. Moreover, other wide-scope indicators such as the wastewater service coverage or the production of bio-based fertilizers and hydrochar within the wastewater sector were analyzed. The results were used for the development of recommendations for improving the resources recovery monitoring framework in the wastewater sector and a proposal of a circularity indicator for a wastewater treatment plant highlighting new challenges for further researches and wastewater professionals.


Assuntos
Águas Residuárias , Purificação da Água , Fertilizantes , Fósforo , Esgotos , Eliminação de Resíduos Líquidos
2.
Polymers (Basel) ; 13(24)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34960982

RESUMO

There are forecasts for the exponential increase in the generation of carbon fibre-reinforced polymer (CFRP) and glass fibre-reinforced polymer (GFRP) composite wastes containing valuable carbon and glass fibres. The recent adoption of these composites in wind turbines and aeroplanes has increased the amount of end-of-life waste from these applications. By adequately closing the life cycle loop, these enormous volumes of waste can partly satisfy the global demand for their virgin counterparts. Therefore, there is a need to properly dispose these composite wastes, with material recovery being the final target, thanks to the strict EU regulations for promoting recycling and reusing as the highest priorities in waste disposal options. In addition, the hefty taxation has almost brought about an end to landfills. These government regulations towards properly recycling these composite wastes have changed the industries' attitudes toward sustainable disposal approaches, and life cycle assessment (LCA) plays a vital role in this transition phase. This LCA study uses climate change results and fossil fuel consumptions to study the environmental impacts of a thermal recycling route to recycle and remanufacture CFRP and GFRP wastes into recycled rCFRP and rGFRP composites. Additionally, a comprehensive analysis was performed comparing with the traditional waste management options such as landfill, incineration with energy recovery and feedstock for cement kiln. Overall, the LCA results were favourable for CFRP wastes to be recycled using the thermal recycling route with lower environmental impacts. However, this contradicts GFRP wastes in which using them as feedstock in cement kiln production displayed more reduced environmental impacts than those thermally recycled to substitute virgin composite production.

3.
Waste Manag ; 90: 132-140, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31088668

RESUMO

Thermal drying and consequent incineration of sewage sludge result in an absolute loss of an important macronutrient - nitrogen. To fulfill the growing food demand, humanity relies more on industrial fixation of nitrogen, primarily via the Haber-Bosch process. The present paper examines the nitrogen release during continuous thermal drying of municipal sewage sludge and its consequent recovery for fertilization. Furthermore, the possibility of nitrogen recovery from condensate is assessed. Finally, the study assesses the global warming potential of the proposed nitrogen recovery system and compares it with the baseline system manufacturing fertilizers from industrially fixed nitrogen. The results of the drying experiments showed that 0.73-1.03 g N-NH3 kg-1 total solids of sewage sludge was released to off-gases during its continuous thermal drying under 160 °C, which corresponds to 41-58% of ionized nitrogen content in raw sewage sludge subjected to thermal drying. The global warming potential of the nitrogen recovery was 28% lower compared to that of the commercial fertilizer production of equivalent properties: 4.1 kg CO2-Equiv. kg-1 N versus 5.7 kg CO2-Equiv. kg-1 N. Still, the sensitivity analysis showed that the results might traverse and lead to a higher global warming potential of 6.2 kg CO2-Equiv. during the nitrogen recovery process under certain process parameters.


Assuntos
Nitrogênio , Esgotos , Fertilizantes , Aquecimento Global , Incineração
4.
RSC Adv ; 8(7): 3582-3591, 2018 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35542941

RESUMO

Cement kiln dust is commonly recycled back into the production process. This results in elevated concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the flue gases of cement plants. The present study investigated the effects the reaction temperature, oxygen content, and origin of kiln dust had on the thermal reaction characteristics of PCDD/Fs. The concentration of 2,3,7,8-PCDD/Fs that were desorbed from the kiln dust decreased as the reaction temperature was increased and the higher temperature facilitated the degradation of PCDD/Fs. However, the oxygen content, which ranged from 6-21%, had only a minor impact on the thermal reaction characteristics of PCDD/Fs. Finally, the thermal reaction characteristics of PCDD/Fs were largely affected by the origin of the kiln dust; 1.2 pg I-TEQ g-1 was desorbed from kiln dust originating from a cement plant that co-processed refuse-derived fuel (RDF) and 47.5 pg I-TEQ g-1 was desorbed from kiln dust originating from a cement plant that co-processed hazardous waste. The study also found that PCDD/F formation pathways were dependent on the origin of the kiln dust; precursor synthesis dominated PCDD/F formation on the kiln dust collected from a cement plant that co-processed RDF, while de novo synthesis dominated the formation of PCDD/Fs on the remaining samples of kiln dust.

5.
Environ Technol ; 39(8): 1052-1060, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28412853

RESUMO

An ongoing call to implement a circular economy is underway in the European Union, and a specific attention has been placed on the forest industry, which seeks additional recycling routes for its side streams, including biosludge. Biosludge is often dried and incinerated, thus wasting the nitrogen contained therein. This paper describes a study in which the release of nitrogen during thermal drying, the impact of the drying temperatures of 130°C, 180°C, and 210°C on the mass of ammonia released, and the potential for recovery of nitrogen from biosludge were examined. The results indicate that 1310-1730 mg kgTS-1 of nitrogen was released, which corresponded to 56-74% of the soluble nitrogen in biosolids or 4.0-5.3% of the total nitrogen. Of this released nitrogen, 83-85% was identified in condensate and absorbing water, thus indicating a high potential for recovering nitrogen from biosludge.


Assuntos
Resíduos Industriais , Nitrogênio/química , Amônia , Dessecação , Papel , Temperatura , Gerenciamento de Resíduos , Água
6.
Chemosphere ; 191: 895-902, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29145134

RESUMO

This study investigates the efficiencies and mechanisms of the catalytic degradation of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) first, in simulated laboratory conditions and then, in a commercial municipal solid waste incineration (MSWI) plant. Five commercially available V2O5-WO3/TiO2 (VWTi) catalysts were tested. The degradation efficiency of PCDD/Fs in the simulated flue gas ranged 22.8-91.7% and was generally higher than that in the MSWI flue gas of 8.0-85.4%. The degradation efficiency of PCDD/Fs in the real flue gas of the MSWI plant was largely hindered by the complex composition of the flue gas, which could not be completely reproduced in the simulated laboratory conditions. Furthermore, the degradation of the higher chlorinated PCDD/Fs was easier compared to the lower chlorinated ones in the presence of the VWTi catalysts, which was primarily driven by the tendency of the higher chlorinated PCDD/Fs to be adsorbed on the surface of the catalyst and further destructed due to their lower vapor pressure. In addition, powdered catalysts should be preferred over the honeycomb shaped ones as they exposed higher PCDD/Fs degradation efficiencies under equal reaction conditions. The chemical composition and a range of the relevant to the study properties of the catalysts, such as surface area, crystallinity, oxidation ability, and surface acidity, were analyzed. The study ultimately supports the identification of the preferred characteristics of the VWTi catalysts for the most efficient degradation of toxic PCDD/Fs and elucidates the corresponding deactivation reasons of the catalysts.


Assuntos
Dibenzofuranos Policlorados/química , Recuperação e Remediação Ambiental/métodos , Incineração , Dibenzodioxinas Policloradas/química , Adsorção , Catálise , Reagentes de Laboratório , Instalações Industriais e de Manufatura , Dibenzodioxinas Policloradas/análise , Resíduos Sólidos
7.
Waste Manag ; 49: 221-229, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26810030

RESUMO

All life forms require phosphorus (P), which has no substitute in food production. The risk of phosphorus loss from soil and limited P rock reserves has led to the development of recycling P from industrial residues. This study investigates the potential of phosphorus recovery from sewage sludge and manure ash by thermochemical treatment (ASH DEC) in Finland. An ASH DEC plant could receive 46-76 kt/a of sewage sludge ash to produce 51-85 kt/a of a P-rich product with a P2O5 content of 13-18%, while 320-750 kt/a of manure ash could be supplied to produce 350-830 kt/a of a P-rich product with a P content of 4-5%. The P2O5 potential in the total P-rich product from the ASH DEC process using sewage sludge and manure ash is estimated to be 25-47 kt/a, which is significantly more than the P fertilizer demand in Finland's agricultural industries. The energy efficiency of integrated incineration and the ASH DEC process is more dependent on the total solid content and the subsequent need for mechanical dewatering and thermal drying than on the energy required by the ASH DEC process. According to the results of this study, the treated sewage sludge and manure ash using the ASH DEC process represent significant potential phosphorus sources for P fertilizer production.


Assuntos
Cinza de Carvão/química , Incineração , Esterco , Fósforo/análise , Esgotos/química , Agricultura , Fertilizantes/análise , Finlândia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...