Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cureus ; 16(5): e60015, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38854201

RESUMO

Vaccination, a historically effective public health intervention, has shielded millions from various diseases. Lessons from severe acute respiratory syndrome coronavirus (SARS-CoV) have improved COVID-19 vaccine development. Despite mRNA vaccines' efficacy, emerging variants pose challenges, exhibiting increased transmissibility, infectivity, and severity. Developing COVID-19 vaccines has faced hurdles due to urgency, limited virus understanding, and the need for safe solutions. Genetic variability necessitates continuous vaccine adjustments and production challenges demand scaling up manufacturing with stringent quality control. This review explores SARS-CoV-2's evolution, upcoming mutations that challenge vaccines, and strategies such as structure-based, T cell-based, respiratory mucosal-based, and nanotechnology approaches for vaccine development. This review insight provides a roadmap for navigating virus evolution and improving vaccine development.

2.
Clin Genet ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38711401

RESUMO

The role of germline genetic testing in urologic oncology has expanded in recent years. However, implementation of genetic testing in community practices remains a challenge, often due to limited access to qualified genetics trained providers. In this study, we report outcomes of a universal germline screening program in a community urology practice. Between November 2021 and September 2022, all patients referred for urology clinic visits at Frederick Health (Frederick, MD, USA) were provided an online genetics screening questionnaire prior to the visit. Responses were compared against National Comprehensive Cancer Network (NCCN) criteria for germline testing. Those who met criteria were provided educational materials at the end of the questionnaire, and then counseled by a trained urologic oncologist (HC) in the clinic or referred to a genetic counselor prior to testing. Testing was performed with a 36-gene pan-cancer panel (CancerNext) or a 14-gene targeted prostate cancer panel (ProstateNext), with or without additional RNA analysis (RNAinsight) (Ambry Genetics, CA, USA). Demographic and clinical parameters, as well as genetic testing results, were retrospectively collected under IRB approval. In the study period, 765 patients were seen over 1370 clinic visits. Of these, 505 patients (66.0%) completed the screening questionnaire. The majority were completed via email (54.5%) with the remainder (45.5%) via text message. Of the patients who completed screening, 125/505 (24.7%) met NCCN criteria for germline testing. 58/125 patients (46.4%) who met criteria underwent germline testing, of whom 5/58 (8.6%) had distinct pathogenic mutations identified. These included actionable mutations in BRCA1, BRCA2, and CHEK2, as well as an additional pathogenic mutation in NBN. Variants of unknown significance were identified in 8/58 patients (13.8%) in 11 total genes. Challenges to implementation of this program included meeting institutional requirements for genetic testing consent, facilitating specimen collection in clinic, and integration of results into the electronic health record. Genetic risk assessment for high-risk individuals is feasible as part of a universal screening program in a community urology practice. Approximately 8% of tested patients were found to have pathogenic germline mutations, which is consistent with contemporary tertiary referral cohorts.

3.
Eur J Neurosci ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802069

RESUMO

Circadian clock function declines with ageing, which can aggravate ageing-related diseases such as type 2 diabetes and neurodegenerative disorders. Understanding age-related changes in the circadian system at a systemic level can contribute to the development of strategies to promote healthy ageing. The goal of this study was to investigate the impact of ageing on 24-h rhythms in amine metabolites across four tissues in young (2 months of age) and old (22-25 months of age) mice using a targeted metabolomics approach. Liver, plasma, the suprachiasmatic nucleus (SCN; the location of the central circadian clock in the hypothalamus) and the paraventricular nucleus (PVN; a downstream target of the SCN) were collected from young and old mice every 4 h during a 24-h period (n = 6-7 mice per group). Differential rhythmicity analysis revealed that ageing impacts 24-h rhythms in the amine metabolome in a tissue-specific manner. Most profound changes were observed in the liver, in which rhythmicity was lost in 60% of the metabolites in aged mice. Furthermore, we found strong correlations in metabolite levels between the liver and plasma and between the SCN and the PVN in young mice. These correlations were almost completely abolished in old mice. These results indicate that ageing is accompanied by a severe loss of the circadian coordination between tissues and by disturbed rhythmicity of metabolic processes. The tissue-specific impact of ageing may help to differentiate mechanisms of ageing-related disorders in the brain versus peripheral tissues and thereby contribute to the development of potential therapies for these disorders.

4.
Indian J Otolaryngol Head Neck Surg ; 76(1): 1421-1424, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38440472

RESUMO

Schwannoma is a benign neurogenic neoplasm which is arising from schwann cells of peripheral nerve sheath. It can occur in anywhere in the body. Schwannoma of sinonasal tract is extremely rare. Here we report a rare case of schwannoma of nasal tip. A 45 year old male presented with a swelling of tip of the nose, causing cosmetic deformity with no other associated symptoms. Surgical excision of the mass done by using external rhinoplasty approach. Histolopathology report of specimen showed a well circumscribed schwannoma with Antoni A and Antoni B areas.

5.
bioRxiv ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38293207

RESUMO

Ischemic stroke-induced mitochondrial dysfunction in the blood-brain barrier-forming brain endothelial cells ( BECs ) results in long-term neurological dysfunction post-stroke. We previously reported that intravenous administration of human BEC ( hBEC )-derived mitochondria-containing extracellular vesicles ( EVs ) showed a potential efficacy signal in a mouse middle cerebral artery occlusion ( MCAo ) model of stroke. We hypothesized that EVs harvested from donor species homologous to the recipient species ( e.g., mouse) may improve therapeutic efficacy, and therefore, use of mouse BEC ( mBEC )-derived EVs may improve post-stroke outcomes in MCAo mice. We investigated if EVs derived from the same species as the recipient cell (mBEC-EVs and recipient mBECs or hBECs-EVs and recipient hBECs) show a greater EV mitochondria delivery efficiency than cross-species EVs and recipient cells (mBEC-EVs and recipient hBECs or vice versa ). Our results showed that mBEC-EVs outperformed hBEC-EVs in transferring EV mitochondria to the recipient ischemic mBECs, and improved mBEC mitochondrial function via increasing oxygen consumption rate. mBEC-EVs significantly reduced brain infarct volume and improved behavioral recovery compared to vehicle-injected MCAo mice. Our data suggests that mBEC-EVs show superior therapeutic efficacy in a mouse MCAo stroke model compared to hBEC-EVs-supporting the continued use of mBEC-EVs to optimize the therapeutic potential of mitochondria-containing EVs in preclinical studies.

6.
J Control Release ; 365: 801, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043728
7.
Cureus ; 15(11): e48936, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38111411

RESUMO

AIM: Coronavirus disease 2019 (COVID-19) and its association with diabetes might lead to mucormycosis, and studies have reported an association between them. This study aims to find the correlation between COVID-19 and diabetic status in patients with mucormycosis and its role in disease progression and prognosis. The objectives of the study are to analyze the clinical range of mucormycosis in those with diabetes and COVID-19 and to correlate the clinical and radiographic findings. MATERIALS AND METHODOLOGY: A retrospective cohort analysis was carried out at Saveetha Dental College and Hospitals in Chennai (approval number: IHEC/SDC/OMED-2204/23/218). The data collection was done from the institution's electronic database from April 2019 to April 2023 which included the patients' age and gender and COVID-19 and diabetic status and clinical and radiographic features of mucormycosis. RESULTS: From the data analyzed, 25 patients had a history of mucormycosis with diabetes and COVID-19 infections. The patients' average age was 47.76, out of which 22 were males and three were females. The chi-squared test showed no significant association between age (0.178), diabetes (0.465), and COVID-19 (0.583). Spearman's correlation was done showing an association between mucormycosis, diabetes, and COVID-19. Radiographically, 100% of the patients had involvement of the maxillary sinus, followed by the palate (32%), orbit (28%), nasal floor (24%), ethmoidal sinus (16%), sphenoidal sinus (12%), and frontal sinus (8%). CONCLUSION: The findings of this study point out the importance of considering the presence of systemic comorbidities like diabetes in COVID-19 patients. Early identification, surgical debridement, and antifungal medications are part of the treatment for increased survival.

8.
Expert Opin Drug Deliv ; 20(12): 1769-1788, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37921194

RESUMO

INTRODUCTION: Ischemic stroke-induced mitochondrial dysfunction in brain endothelial cells (BECs) leads to breakdown of the blood-brain barrier (BBB) causing long-term neurological dysfunction. Restoration of mitochondrial function in injured BECs is a promising therapeutic strategy to alleviate stroke-induced damage. Mounting evidence demonstrate that selected subsets of cell-derived extracellular vehicles (EVs), such as exosomes (EXOs) and microvesicles (MVs), contain functional mitochondrial components. Therefore, development of BEC-derived mitochondria-containing EVs for delivery to the BBB will (1) alleviate mitochondrial dysfunction and limit long-term neurological dysfunction in ischemic stroke and (2) provide an alternative therapeutic option for treating numerous other diseases associated with mitochondrial dysfunction. AREA COVERED: This review will discuss (1) how EV subsets package different types of mitochondrial components during their biogenesis, (2) mechanisms of EV internalization and functional mitochondrial responses in the recipient cells, and (3) EV biodistribution and pharmacokinetics - key factors involved in the development of mitochondria-containing EVs as a novel BBB-targeted stroke therapy. EXPERT OPINION: Mitochondria-containing MVs have demonstrated therapeutic benefits in ischemic stroke and other pathologies associated with mitochondrial dysfunction. Delivery of MV mitochondria to the BBB is expected to protect the BBB integrity and neurovascular unit post-stroke. MV mitochondria quality control, characterization, mechanistic understanding of its effects in vivo, safety and efficacy in different preclinical models, large-scale production, and establishment of regulatory guidelines are foreseeable milestones to harness the clinical potential of MV mitochondria delivery.


Assuntos
Vesículas Extracelulares , AVC Isquêmico , Doenças Mitocondriais , Acidente Vascular Cerebral , Humanos , Barreira Hematoencefálica/metabolismo , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/metabolismo , Células Endoteliais/metabolismo , Distribuição Tecidual , Vesículas Extracelulares/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia
9.
Cureus ; 15(10): e46928, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38021805

RESUMO

In traditional treatment modalities and standard clinical practices, FLASH radiotherapy (FL-RT) administers radiation therapy at an exceptionally high dosage rate. When compared to standard dose rate radiation therapy, numerous preclinical investigations have demonstrated that FL-RT provides similar benefits in conserving normal tissue while maintaining equal antitumor efficacy, a phenomenon possible due to the 'FLASH effect' (FE) of FL-RT. The methodologies involve proton radiotherapy, intensity-modulated radiation treatment, and managing high-throughput damage by radiation to solid tissues. Recent results from animal studies indicate that FL-RT can reduce radiation-induced tissue damage, significantly enhancing anticancer potency. Focusing on the potential benefits of FL proton beam treatment in the years to come, this review details the FL-RT research that has been done so far and the existing theories illuminating the FL effects. This subject remains of interest, with many issues still needing to be answered. We offer a brief review to emphasize a few of the key efforts and difficulties in moving FL radiation research forward. The existing research state of FL-RT, its affecting variables, and its different specific impacts are presented in this current review. Key topics discussed include the biochemical mechanism during FL therapy, beam sources for FL therapy, the FL effect on immunity, clinical and preclinical studies on the protective effect of FL therapy, and parameters for effective FL therapy.

10.
Glob Health Action ; 16(1): 2256129, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37732993

RESUMO

BACKGROUND: India has been implementing active case-finding (ACF) for TB among marginalised and vulnerable (high-risk) populations since 2017. The effectiveness of ACF cycle(s) is dependent on the use of appropriate screening and diagnostic tools and meeting quality indicators. OBJECTIVES: To determine the number of ACF cycles implemented in 2021 at national, state (n = 36) and district (n = 768) level and quality indicators for the first ACF cycle. METHODS: In this descriptive study, aggregate TB program data for each ACF activity that was extracted was further aggregated against each ACF cycle at the district level in 2021. One ACF cycle was the period identified to cover all the high-risk populations in the district. Three TB ACF quality indicators were calculated: percentage population screened (≥10%), percentage tested among screened (≥4.8%) and percentage diagnosed among tested (≥5%). We also calculated the number needed to screen (NNS) for diagnosing one person with TB (≤1538). RESULTS: Of 768 TB districts, ACF data for 111 were not available. Of the remaining 657 districts, 642 (98%) implemented one, and 15 implemented two to three ACF cycles. None of the districts or states met all three TB ACF quality indicators' cut-offs. At the national level, for the first ACF cycle, 9.3% of the population were screened, 1% of the screened were tested and 3.7% of the tested were diagnosed. The NNS was 2824: acceptable (≤1538) in institutional facilities and poor for population-based groups. Data were not consistently available to calculate the percentage of i) high-risk population covered, ii) presumptive TB among screened and iii) tested among presumptive. CONCLUSION: In 2021, India implemented one ACF cycle with sub-optimal ACF quality indicators. Reducing the losses between screening and testing, improving data quality and sensitising stakeholders regarding the importance of meeting all ACF quality indicators are recommended.


Assuntos
Análise de Dados Secundários , Tuberculose , Humanos , Tuberculose/diagnóstico , Tuberculose/epidemiologia , Tuberculose/prevenção & controle , Confiabilidade dos Dados , Instalações de Saúde , Índia/epidemiologia
11.
Front Public Health ; 11: 1236690, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37663861

RESUMO

The potential for influenza viruses to cause public health emergencies is great. The World Health Organisation (WHO) in 2005 concluded that the world was unprepared to respond to an influenza pandemic. Available surveillance guidelines for pandemic influenza lack the specificity that would enable many countries to establish operational surveillance plans. A well-designed epidemiological and virological surveillance is required to strengthen a country's capacity for seasonal, novel, and pandemic influenza detection and prevention. Here, we describe the protocol to establish a novel mechanism for influenza and SARS-CoV-2 surveillance in the four identified districts of Tamil Nadu, India. This project will be carried out as an implementation research. Each district will identify one medical college and two primary health centres (PHCs) as sentinel sites for collecting severe acute respiratory infections (SARI) and influenza like illness (ILI) related information, respectively. For virological testing, 15 ILI and 10 SARI cases will be sampled and tested for influenza A, influenza B, and SARS-CoV-2 every week. Situation analysis using the WHO situation analysis tool will be done to identify the gaps and needs in the existing surveillance systems. Training for staff involved in disease surveillance will be given periodically. To enhance the reporting of ILI/SARI for sentinel surveillance, trained project staff will collect information from all ILI/SARI patients attending the sentinel sites using pre-tested tools. Using time, place, and person analysis, alerts for abnormal increases in cases will be generated and communicated to health authorities to initiate response activities. Advanced epidemiological analysis will be used to model influenza trends over time. Integrating virological and epidemiological surveillance data with advanced analysis and timely communication can enhance local preparedness for public health emergencies. Good quality surveillance data will facilitate an understanding outbreak severity and disease seasonality. Real-time data will help provide early warning signals for prevention and control of influenza and COVID-19 outbreaks. The implementation strategies found to be effective in this project can be scaled up to other parts of the country for replication and integration.


Assuntos
COVID-19 , Influenza Humana , Humanos , Influenza Humana/epidemiologia , Índia/epidemiologia , Emergências , COVID-19/epidemiologia , SARS-CoV-2
12.
Gynecol Oncol ; 171: 129-140, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36893489

RESUMO

OBJECTIVE: Universal screening of endometrial carcinoma (EC) for mismatch repair deficiency (MMRd) and Lynch syndrome uses presence of MLH1 methylation to omit common sporadic cases from follow-up germline testing. However, this overlooks rare cases with high-risk constitutional MLH1 methylation (epimutation), a poorly-recognized mechanism that predisposes to Lynch-type cancers with MLH1 methylation. We aimed to determine the role and frequency of constitutional MLH1 methylation among EC cases with MMRd, MLH1-methylated tumors. METHODS: We screened blood for constitutional MLH1 methylation using pyrosequencing and real-time methylation-specific PCR in patients with MMRd, MLH1-methylated EC ascertained from (i) cancer clinics (n = 4, <60 years), and (ii) two population-based cohorts; "Columbus-area" (n = 68, all ages) and "Ohio Colorectal Cancer Prevention Initiative (OCCPI)" (n = 24, <60 years). RESULTS: Constitutional MLH1 methylation was identified in three out of four patients diagnosed between 36 and 59 years from cancer clinics. Two had mono-/hemiallelic epimutation (∼50% alleles methylated). One with multiple primaries had low-level mosaicism in normal tissues and somatic "second-hits" affecting the unmethylated allele in all tumors, demonstrating causation. In the population-based cohorts, all 68 cases from the Columbus-area cohort were negative and low-level mosaic constitutional MLH1 methylation was identified in one patient aged 36 years out of 24 from the OCCPI cohort, representing one of six (∼17%) patients <50 years and one of 45 patients (∼2%) <60 years in the combined cohorts. EC was the first/dual-first cancer in three patients with underlying constitutional MLH1 methylation. CONCLUSIONS: A correct diagnosis at first presentation of cancer is important as it will significantly alter clinical management. Screening for constitutional MLH1 methylation is warranted in patients with early-onset EC or synchronous/metachronous tumors (any age) displaying MLH1 methylation.


Assuntos
Neoplasias Colorretais , Neoplasias do Endométrio , Humanos , Feminino , Pessoa de Meia-Idade , Metilação de DNA , Linhagem , Proteínas Adaptadoras de Transdução de Sinal/genética , Neoplasias Colorretais/genética , Neoplasias do Endométrio/genética , Proteína 1 Homóloga a MutL/genética , Reparo de Erro de Pareamento de DNA
13.
SN Comput Sci ; 4(2): 197, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36785803

RESUMO

The psychological, emotional and social well-being of an individual determines their ability to contribute and function as a social member. Several studies over the years have proven that an alarming number of people live with mental illnesses, of which only a fraction is documented. Studies conducted by Open Sourcing Mental Illness (OSMI) organization have indicated that these figures are much higher in the tech industry. We present an analysis of patterns and infer contributory factors for mental illness in the tech industry, to aid in the early detection and assess employees' risk of diagnosis. Towards this end, the study comprises a detailed analysis, models for prediction of diagnosis, risk-based clustering and investigation into existing literature on factors contributing to mental illness. In addition to this, we have attempted to understand the impact of Covid-19 through analyzing trends of the factors influencing mental health, pre- and post-pandemic. We conclude with an insight to the impact of the COVID-19 pandemic on global mental health and the actions taken in the workplace to mitigate this.

14.
J Neurosci ; 43(7): 1089-1110, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36599680

RESUMO

Dynamic reconfiguration of circuit function subserves the flexibility of innate behaviors tuned to physiological states. Internal energy stores adaptively regulate feeding-associated behaviors and integrate opposing hunger and satiety signals at the level of neural circuits. Across vertebrate lineages, the neuropeptides cocaine- and amphetamine-regulated transcript (CART) and neuropeptide Y (NPY) have potent anorexic and orexic functions, respectively, and show energy-state-dependent expression in interoceptive neurons. However, how the antagonistic activities of these peptides modulate circuit plasticity remains unclear. Using behavioral, neuroanatomical, and activity analysis in adult zebrafish of both sexes, along with pharmacological interventions, we show that CART and NPY activities converge on a population of neurons in the dorsomedial telencephalon (Dm). Although CART facilitates glutamatergic neurotransmission at the Dm, NPY dampens the response to glutamate. In energy-rich states, CART enhances NMDA receptor (NMDAR) function by protein kinase A/protein kinase C (PKA/PKC)-mediated phosphorylation of the NR1 subunit of the NMDAR complex. Conversely, starvation triggers NPY-mediated reduction in phosphorylated NR1 via calcineurin activation and inhibition of cAMP production leading to reduced responsiveness to glutamate. Our data identify convergent integration of CART and NPY inputs by the Dm neurons to generate nutritional state-dependent circuit plasticity that is correlated with the behavioral switch induced by the opposing actions of satiety and hunger signals.SIGNIFICANCE STATEMENT Internal energy needs reconfigure neuronal circuits to adaptively regulate feeding behavior. Energy-state-dependent neuropeptide release can signal energy status to feeding-associated circuits and modulate circuit function. CART and NPY are major anorexic and orexic factors, respectively, but the intracellular signaling pathways used by these peptides to alter circuit function remain uncharacterized. We show that CART and NPY-expressing neurons from energy-state interoceptive areas project to a novel telencephalic region, Dm, in adult zebrafish. CART increases the excitability of Dm neurons, whereas NPY opposes CART activity. Antagonistic signaling by CART and NPY converge onto NMDA-receptor function to modulate glutamatergic neurotransmission. Thus, opposing activities of anorexic CART and orexic NPY reconfigure circuit function to generate flexibility in feeding behavior.


Assuntos
Neuropeptídeo Y , Neuropeptídeos , Masculino , Animais , Feminino , Neuropeptídeo Y/metabolismo , Peixe-Zebra/metabolismo , Neuropeptídeos/metabolismo , Neurônios/metabolismo , Prosencéfalo/metabolismo , Glutamatos
15.
J Control Release ; 354: 368-393, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36642252

RESUMO

Ischemic stroke causes brain endothelial cell (BEC) death and damages tight junction integrity of the blood-brain barrier (BBB). We harnessed the innate mitochondrial load of BEC-derived extracellular vesicles (EVs) and utilized mixtures of EV/exogenous 27 kDa heat shock protein (HSP27) as a one-two punch strategy to increase BEC survival (via EV mitochondria) and preserve their tight junction integrity (via HSP27 effects). We demonstrated that the medium-to-large (m/lEV) but not small EVs (sEV) transferred their mitochondrial load, that subsequently colocalized with the mitochondrial network of the recipient primary human BECs. Recipient BECs treated with m/lEVs showed increased relative ATP levels and mitochondrial function. To determine if the m/lEV-meditated increase in recipient BEC ATP levels was associated with m/lEV mitochondria, we isolated m/lEVs from donor BECs pre-treated with oligomycin A (OGM, mitochondria electron transport complex V inhibitor), referred to as OGM-m/lEVs. BECs treated with naïve m/lEVs showed a significant increase in ATP levels compared to untreated OGD cells, OGM-m/lEVs treated BECs showed a loss of ATP levels suggesting that the m/lEV-mediated increase in ATP levels is likely a function of their innate mitochondrial load. In contrast, sEV-mediated ATP increases were not affected by inhibition of mitochondrial function in the donor BECs. Intravenously administered m/lEVs showed a reduction in brain infarct sizes compared to vehicle-injected mice in a mouse middle cerebral artery occlusion model of ischemic stroke. We formulated binary mixtures of human recombinant HSP27 protein with EVs: EV/HSP27 and ternary mixtures of HSP27 and EVs with a cationic polymer, poly (ethylene glycol)-b-poly (diethyltriamine): (PEG-DET/HSP27)/EV. (PEG-DET/HSP27)/EV and EV/HSP27 mixtures decreased the paracellular permeability of small and large molecular mass fluorescent tracers in oxygen glucose-deprived primary human BECs. This one-two punch approach to increase BEC metabolic function and tight junction integrity may be a promising strategy for BBB protection and prevention of long-term neurological dysfunction post-ischemic stroke.


Assuntos
Vesículas Extracelulares , AVC Isquêmico , Acidente Vascular Cerebral , Camundongos , Humanos , Animais , Proteínas de Choque Térmico HSP27/metabolismo , Encéfalo/metabolismo , Barreira Hematoencefálica/metabolismo , Acidente Vascular Cerebral/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Proteínas de Choque Térmico/metabolismo , AVC Isquêmico/metabolismo , Mitocôndrias/metabolismo , Vesículas Extracelulares/metabolismo , Trifosfato de Adenosina/metabolismo
16.
Cell Mol Bioeng ; 15(5): 367-389, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36444353

RESUMO

Introduction: Extracellular vesicles (EVs) are promising carriers for the delivery of biotherapeutic cargo such as RNA and proteins. We have previously demonstrated that the innate EV mitochondria in microvesicles (MVs), but not exosomes (EXOs) can be transferred to recipient BECs and mouse brain slice neurons. Here, we sought to determine if the innate EV mitochondrial load can be further increased via increasing mitochondrial biogenesis in the donor cells. We hypothesized that mitochondria-enriched EVs ("mito-EVs") may increase the recipient BEC ATP levels to a greater extent than naïve MVs. Methods: We treated NIH/3T3, a fibroblast cell line and hCMEC/D3, a human brain endothelial cell (BEC) line using resveratrol to activate peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α), the central mediator of mitochondrial biogenesis. Naïve EVs and mito-EVs isolated from the non-activated and activated donor cells were characterized using transmission electron microscopy, dynamic light scattering and nanoparticle tracking analysis. The effect of mito-EVs on resulting ATP levels in the recipient BECs were determined using Cell Titer Glo ATP assay. The uptake of Mitotracker Red-stained EVs into recipient BECs and their colocalization with recipient BEC mitochondria were studied using flow cytometry and fluorescence microscopy. Results: Resveratrol treatment increased PGC-1α expression in the donor cells. Mito-MVs but not mito-EXOs showed increased expression of mitochondrial markers ATP5A and TOMM20 compared to naïve MVs. TEM images showed that a greater number of mito-MVs contained mitochondria compared to naïve MVs. Mito-MVs but not mito-EXOs showed a larger particle diameter compared to their naïve EV counterparts from the non-activated cells suggesting increased mitochondria incorporation. Mito-EVs were generated at higher particle concentrations compared to naïve EVs from non-activated cells. Mito-EVs increased the cellular ATP levels and transferred their mitochondrial load into the recipient BECs. Mito-MV mitochondria also colocalized with recipient BEC mitochondria. Conclusions: Our results suggest that the pharmacological modulation of mitochondrial biogenesis in the donor cells can change the mitochondrial load in the secreted MVs. Outcomes of physicochemical characterization studies and biological assays confirmed the superior effects of mito-MVs compared to naïve MVs-suggesting their potential to improve mitochondrial function in neurovascular and neurodegenerative diseases. Supplementary Information: The online version contains supplementary material available at 10.1007/s12195-022-00738-8.

17.
Indian Heart J ; 74(6): 469-473, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36243102

RESUMO

Patients who undergo heart valve replacements with mechanical valves need to take Vitamin K Antagonists (VKA) drugs (Warfarin, Nicoumalone) which has got a very narrow therapeutic range and needs very close monitoring using PT-INR. Accessibility to physicians to titrate drugs doses is a major problem in low-middle income countries (LMIC) like India. Our work was aimed at predicting the maintenance dosage of these drugs, using the de-identified medical data collected from patients attending an INR Clinic in South India. We used artificial intelligence (AI) - machine learning to develop the algorithm. A Support Vector Machine (SVM) regression model was built to predict the maintenance dosage of warfarin, who have stable INR values between 2.0 and 4.0. We developed a simple user friendly android mobile application for patients to use the algorithm to predict the doses. The algorithm generated drug doses in 1100 patients were compared to cardiologist prescribed doses and found to have an excellent correlation.


Assuntos
Aplicativos Móveis , Varfarina , Humanos , Inteligência Artificial , Coeficiente Internacional Normatizado , Anticoagulantes , Fibrinolíticos/uso terapêutico , Valvas Cardíacas , Vitamina K , Aprendizado de Máquina
18.
J Control Release ; 343: 400-407, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35131369

RESUMO

The field of drug delivery has made tremendous advances in increasing the therapeutic potential of a variety of drug candidates spanning from small molecules to large molecular biologics such as nucleic acids, proteins, etc. Extracellular vesicles (EVs) are mediators of intercellular communication and carry a rich cocktail of innate cargo including lipids, proteins and nucleic acids. EVs are a promising class of natural, cell-derived carriers for drug delivery. EVs of particle diameters <200 nm are referred to as small EVs (sEVs) and medium-to-larger particles of diameters >200 nm are referred to as m/lEVs. The m/lEVs naturally incorporate mitochondria during their biogenesis. In this Oration, I will discuss the potential of m/lEVs as carriers for the delivery of healthy and functional mitochondria. Mitochondrial damage and dysfunction play a causal role in multiple pathologies such as neurodegenerative diseases, cardiovascular and metabolic diseases-suggesting that m/lEV-mediated mitochondria delivery can be of broad biomedical significance. A major advantage of harnessing m/lEVs is that the delivered mitochondria are capable of using endogenous mechanisms for repairing the cellular damage. I will highlight the delivery potential of m/lEVs based on the studies we have conducted so far and discuss unaddressed issues towards their development as a novel class of mitochondria carriers.


Assuntos
Vesículas Extracelulares , Ácidos Nucleicos , Sistemas de Liberação de Medicamentos , Vesículas Extracelulares/metabolismo , Mitocôndrias/metabolismo , Proteínas/metabolismo
19.
J Membr Biol ; 255(4-5): 591-597, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35226119

RESUMO

Discovery-based proteomics workflows that identify novel interactors rely on immunoprecipitations or pull-downs with genetically tagged bait proteins immobilized on appropriate matrices. But strategies to analyse protein interactions on a diffusible-membrane surface combined with the practical ease of pull-downs remain unavailable. Such strategies are important to analyse protein complexes that mature in composition and stability because of diffusion-based encounter between participant proteins. Here, we describe a generic pull-down strategy to analyse such complexes using chelating lipid-containing supported bilayers formed on silica beads. These templates can display desired His-tagged bait proteins on a diffusible-membrane surface. Using clathrin-mediated endocytosis as a paradigm, we find that the clathrin-binding adaptor protein epsin1 displayed as bait on these templates pulls down significantly higher amounts of clathrin from brain lysates than when immobilized on conventional matrices. Together, our results establish the potential of such templates as superior matrices for analysing protein-protein interactions and resultant complexes formed on membrane surfaces.


Assuntos
Clatrina , Dióxido de Silício , Humanos , Clatrina/metabolismo , Endocitose , Proteômica , Lipídeos
20.
Neurosci Lett ; 766: 136357, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34808269

RESUMO

Major factors contribute to mental stress and enhance the progression of late-onset Alzheimer's disease (AD). The factors that lead to neurodegeneration, such as tau protein hyperphosphorylation and increased amyloid-beta production, can be mimicked in animal stress models. The present study identifies differentially expressed genes (DEGs) data and its corresponding predictive image analysis in rat models. The gene expression profile of GSE72062, GSE85162, GSE143951 and GSE85238 was downloaded from NCBI, GEO archive to analyse DEGs. Functional enrichment and pathway relationship networks, gene signal, protein interaction and micro-RNA interaction DEGs networks were constructed and investigated. The image analysis of histopathological slides of rat brain images corresponding to AD microarray-based DEGs profile was undertaken using the convolution neural networks (ConvNets) model. Enrichment of network in terms of GO concluded with 10 DEGs, namely ARHGAP32, GNA11, NR5A1, GNAT3, FOSL1, HELZ2, NMUR2, BDKRB1, RPL3L and RPL39L as potential gene targets to control neurodegeneration and progression of sporadic AD. The image analysis of AD microarray-based DEGs profile builds a successful predictive model of 89% and 61% training and test accuracy with a minimum of 2.480% loss using transfer learning, VGG16 model. Interestingly, the ARHGAP32 gene, a Rho GTPase activating class, was identified to have a functional relationship with two significant genes BCL2 and MMP9, that are well explored in AD. The current investigation upgrades the traditional pre-clinical AD research using microarray data analysis and ConvNets. The model successfully predicts DEG from histopathology slides of rat brain samples, paving the way for image analysis to determine the underlying molecular makeup of the test samples.


Assuntos
Doença de Alzheimer/genética , Perfilação da Expressão Gênica/métodos , Hipocampo , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Animais , Humanos , Análise em Microsséries , Ratos , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...