Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Food Sec ; 37: 100684, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37351552

RESUMO

A growing urban population and dietary changes increased wheat import bills in Africa to 9% per year. Though wheat production in the continent has been increasing over the past decades, to varying degrees depending on regions, this has not been commensurate with the rapidly increasing demand for wheat. Analyses of wheat yield gaps show that there is ample opportunity to increase wheat production in Africa through improved genetics and agronomic practices. Doing so would reduce import dependency and increase wheat self-sufficiency at national level in many African countries. In view of the uncertainties revealed by the global COVID-19 pandemic, extreme weather events, and world security issues, national policies in Africa should re-consider the value of self-sufficiency in production of staple food crops, specifically wheat. This is particularly so for areas where water-limited wheat yield gaps can be narrowed through intensification on existing cropland and judicious expansion of rainfed and irrigated wheat areas. Increasing the production of other sources of calories (and proteins) should also be considered to reduce dependency on wheat imports.

2.
PLoS One ; 15(4): e0231377, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32298316

RESUMO

Lentil (Lens culinaris Medik.) is a cool-season pulse grown in winter cropping cycle in South Asia and provides a major source of nutrition for many low-income households. Lentil productivity is perceived to be sensitive to high rainfall, but few studies document spatial and temporal patterns of yield variation across climate, soil, and agronomic gradients. Using farm survey data from Nepal, this study characterizes patterns of lentil productivity and efficiency for two cropping seasons. Additional insights were derived from on-farm trials conducted over a 5-year period that assess agronomic, drainage, and cultivar interventions. To contextualize the inferences derived from farm surveys and trials, the Stempedia model was used to simulate the severity of Stemphylium blight (Stemphylium botryosum) risk-the principal fungal disease in lentil-with 30 years of historical climate data. Although development efforts in Nepal have prioritized pulse intensification, results confirm that lentil remains a risky enterprise highlighting the prevalence of crop failures (16%), modest yields (353 kg ha-1), and low levels of profitability (US$ 33 ha-1) in wet winters. Nevertheless, site factors such as drainage class influence responses with upland sites performing well in wet winters and lowland sites performing well in dry winters. In wet winters, a phenomena perceived to be increasing, 76% of surveyed farmers reported significant disease pressure and simulations with Stempedia predict that conditions favoring Stemphylium occur in >60% of all years. Nevertheless, simulation results also suggest that these risks can be addressed through earlier planting. Based on the combined results, gains in yield, yield stability, and technical efficiency can be enhanced in western Nepal by: 1) ensuring timely lentil planting to mitigate climate-mediated disease risk, 2) evaluating new lentil lines that may provide enhanced resistance to diseases and waterlogging, and 3) encouraging the emergence of mechanization solutions to overcome labor bottlenecks.


Assuntos
Biomassa , Clima , Produção Agrícola/métodos , Produtos Agrícolas/crescimento & desenvolvimento , Lens (Planta)/crescimento & desenvolvimento , Simulação por Computador , Produção Agrícola/normas , Nepal
3.
Field Crops Res ; 228: 93-101, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30739981

RESUMO

Nepal is at a crossroads of diminishing farm-labor and inadequate investment into farming operations that, among other factors, have stagnated domestic wheat yield. Cultural and economic constraints have hindered the widespread adoption of more expensive precision agriculture technologies like zero-till that have the capacity to improve labor and farm input efficiencies. To capture the benefits from added precision of application but with the ability to fit within the current semi-mechanized seed bed preparation and tillage system, we introduced a low-cost, chest mounted seed and fertilizer. We found that simple mechanization caused yield efficiencies to be positive and significant for nitrogen and phosphate. Seed rates using this method were positively associated with seedling density. This led to both yield and profit being more predictable for farmers. Conversely, hand-applied inputs caused a disassociation between inputs and end of season yield and therefore added a large measure of risk to their farming operations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...