Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 9(7)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34361967

RESUMO

Bacterioplankton communities play a crucial role in freshwater ecosystem functioning, but it is unknown how co-occurrence networks within these communities respond to human activity disturbances. This represents an important knowledge gap because changes in microbial networks could have implications for their functionality and vulnerability to future disturbances. Here, we compare the spatiotemporal and biogeographical patterns of bacterioplankton molecular ecological networks using high-throughput sequencing of Illumina HiSeq and multivariate statistical analyses from a subtropical river during wet and dry seasons. Results demonstrated that the lower reaches (high human activity intensity) network had less of an average degree (10.568/18.363), especially during the dry season, when compared with the upper reaches (low human activity intensity) network (10.685/37.552) during the wet and dry seasons, respectively. The latter formed more complexity networks with more modularity (0.622/0.556) than the lower reaches (high human activity intensity) network (0.505/0.41) during the wet and dry seasons, respectively. Bacterioplankton molecular ecological network under high human activity intensity became significantly less robust, which is mainly caused by altering of the environmental conditions and keystone species. Human activity altered the composition of modules but preserved their ecological roles in the network and environmental factors (dissolved organic carbon, temperature, arsenic, oxidation-reduction potential and Chao1 index) were the best parameters for explaining the variations in bacterioplankton molecular ecological network structure and modules. Proteobacteria, Actinobacteria and Bacteroidetes were the keystone phylum in shaping the structure and niche differentiations in the network. In addition, the lower reaches (high human activity intensity) reduce the bacterioplankton diversity and ecological niche differentiation, which deterministic processes become more important with increased farmland and constructed land area (especially farmland) with only 35% and 40% of the community variation explained by the neutral community model during the wet season and dry season, respectively. Keystone species in high human activity intensity stress habitats yield intense functional potentials and Bacterioplankton communities harbor keystone taxa in different human activity intensity stress habitats, which may exert their influence on microbiome network composition regardless of abundance. Therefore, human activity plays a crucial role in shaping the structure and function of bacterioplankton molecular ecological networks in subtropical rivers and understanding the mechanisms of this process can provide important information about human-water interaction processes, sustainable uses of freshwater as well as watershed management and conservation.

2.
Sci Rep ; 11(1): 4887, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649457

RESUMO

Water level conditions are the key factors that affect the growth and distribution of wetland plants. Using Carex cinerascens (C. cinerascens) as the study species, we employ indoor simulations and field surveys. Our results show that C. cinerascens can adapt to rhythmic changes in the water level through different adaptation strategies. Compared to that of the control group, plant growth was better with a 0-0.4 cm/d water level rate, and plant growth was in the 42-56 cm range to that a 1.0-1.4 cm/d water level rate. Furthermore, it was observed that 0-0.4 cm/d was the most suitable growth rate, with 0.6-1.0 cm/d and 0-32 cm being the ideal plant tolerance ranges, and increasing to 1.0-1.4 cm/d and 32-56 cm exceeds the plant tolerance threshold. In the middle and late period of the experiment (25-45 d), the ecological characteristics of the plants changed significantly. For example, the root-to-shoot ratio of the plant in the stable water level reached 26.1. In our field observations, plant biomass can be influenced by a variety of environmental factors. The frequency of the species was the largest at an elevation of 15 m, and the growth status of the dominant and companion species of C. cinerascens was weakened with an increase in soil moisture content. The suitable water content for C. cinerascens growth was 27.6-57.3%, the distribution elevation was 12.54-16.59 m, and the optimum elevation was 13.56-15.54 m. The study is expected to provide a reference for wetland ecology research and wetland protection and restoration, a theoretical reference for the coordination of water resource development and utilization of Poyang Lake and ecological protection of important lakes and wetlands, and an important scientific basis for wetland hydrologic regulation, ecological restoration and biodiversity conservation.

3.
Microorganisms ; 9(2)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557135

RESUMO

Soil microbes play a crucial role in ecosystem function. Here, the effects of soil and water conservation measures on soil microbial community structures, biodiversity, and co-occurrence networks are investigated and compared. We sampled soils at three different depths (0-10 cm, 10-20 cm and 20-40 cm) in a citrus orchard that uses long-term soil and water conservation measures, which includes Bermuda grass strip intercropping (BS), Bermuda grass full coverage (BF), Radish-soybean crop rotation strip intercropping (RS) and clear tillage orchards (CT). Results demonstrated that BS and BF yields a significant increase in bacterial richness and diversity of fungal in soils, while BF contains more beneficial microbial taxa, especially those with degrading and nutrient cycling capabilities. Microbial community structures differed significantly among the applied measures. In addition, co-occurrence networks under BS, BF and RS were more complex and robust than that of CT, and the stability of the network in BF was the highest. Microbial interactive stability and potential interactions in bacterial networks were stronger than those of fungi. The distribution of dominant phyla showed that Chloroflexi and Ascomycota dominated the different soil and water conservation measures. Proteobacteria and Ascomycota are revealed to be keystone species in bacterial networks and fungal networks, respectively, while Proteobacteria was the keystone species in microbial networks. Though the relative abundance of Chloroflexi turned out to have increased among the four measures, the relative abundance for Proteobacteria, Acidobacteria and Actinobacteria all decreased along the soil profile, with Acidobacteria under BS to be an exception. Soils under BS and BF had higher total nitrogen, microbial biomass carbon and organic carbon than CT and RS. Organic carbon(C) and total nitrogen(N) in soil were the major drivers of these bacterial community patterns, while there was no significant correlation between them and fungi. Overall, BF increases soil nutrients and microbial diversity, and also promotes ecological stability and interrelations among microbial taxa that collectively improve soil quality in the citrus orchard studied. Therefore, we recommended BF to be an ideal application for citrus orchards of southeast China.

4.
Sci Total Environ ; 761: 143260, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33223159

RESUMO

The lakes along the Yangtze River are important source of pollutants that ultimately flow from the river into the East China Sea. Bioremediation is a green technology used to treat polluted water in lakes along the Yangtze River. Life cycle assessment and a comprehensive water quality index are used to evaluate the potential environmental impacts of constructed wetlands (CWs), ecological floating beds (EFBs), and combined ecological floating beds (CEFBs). The results showed that the raw material acquisition, construction, and operation of the CWs, EFBs, and CEFBs accounted for 24.1%, 35.3%, and 40.6%, respectively, of the total environmental impact. The acquisition of raw materials to construct the bioremediation system accounted for 51.6% of the total environmental impact. Among the nine impact categories considered, the system's global warming potential was the largest. Among the three stages of the project (raw material acquisition, construction, and operation), construction had the largest impact on eutrophication (the eutrophic potential of the construction stage was the largest). Furthermore, the operation of the project reduced the human eco-toxicity potential. The evaluation of the water quality before and after implementing the project revealed that CEFBs purified the water more effectively than CWs and EFBs did, particularly with respect to the removal of the total phosphorus.


Assuntos
Poluentes Químicos da Água , Qualidade da Água , Animais , Biodegradação Ambiental , China , Humanos , Estágios do Ciclo de Vida , Nitrogênio/análise , Fósforo/análise , Poluentes Químicos da Água/análise , Poluição da Água/análise , Áreas Alagadas
5.
Sci Rep ; 8(1): 18044, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30575782

RESUMO

Through the use of satellite scatterometer data, it is observed that the East Asian northerly monsoonal winds decrease drastically when crossing the Kuroshio Current. In a section across the Kuroshio Current region, as revealed by reanalysis data, it is suggested that the upward velocity has a two-cell structure extending to the 500 hPa height, and a strong atmospheric convergence is present below the 900 hPa level. The reanalysis data also show that the northerly wind speed decreases significantly when crossing the Kuroshio Current region below 850 hPa height. A sensitivity analysis is implemented using the Weather Research and Forecasting (WRF) model, showing that the atmospheric convergence and the northerly wind drop are enhanced as the Kuroshio region surface temperature increases. This indicates that the Kuroshio Current can act as a barrier to the East Asian northerly monsoonal winds in winter.

6.
Sci Rep ; 7(1): 17021, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29208973

RESUMO

Are perturbations to ocean tides correlated with changing sea-level and climate, and how will this affect high water levels? Here, we survey 152 tide gauges in the Pacific Ocean and South China Sea and statistically evaluate how the sum of the four largest tidal constituents, a proxy for the highest astronomical tide (HAT), changes over seasonal and interannual time scales. We find that the variability in HAT is significantly correlated with sea-level variability; approximately 35% of stations exhibit a greater than ±50 mm tidal change per meter sea-level fluctuation. Focusing on a subset of three stations with long records, probability density function (PDF) analyses of the 95% percentile exceedance of total sea level (TSL) show long-term changes of this high-water metric. At Hong Kong, the increase in tides significantly amplifies the risk caused by sea-level rise. Regions of tidal decrease and/or amplification highlight the non-linear response to sea-level variations, with the potential to amplify or mitigate against the increased flood risk caused by sea-level rise. Overall, our analysis suggests that in many regions, local flood level determinations should consider the joint effects of non-stationary tides and mean sea level (MSL) at multiple time scales.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA