Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nat Prod ; 71(2): 285-8, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18211006

RESUMO

We report the determination of the absolute configuration (AC) of the iridoid natural product oruwacin by comparison of the optical rotations, [alpha] D, of its two enantiomers, calculated using time-dependent density functional theory (TDDFT), to the experimental [alpha] D value, +193. Conformational analysis of oruwacin using density functional theory (DFT) identifies eight conformations which are significantly populated at room temperature. [alpha] D values of these eight conformations are calculated using TDDFT at the B3LYP/aug-cc-pVDZ//B3LYP/6-31G* level, leading to the conformationally averaged [alpha] D values of -193 for the (1 R,5 S,8 S,9 S,10 S)-enantiomer and +193 for the (1 S,5 R,8 R,9 R,10 R)-enantiomer. Comparison of the calculated [alpha] D values to the value of the natural product proves that naturally occurring oruwacin has the AC 1 S,5 R,8 R,9 R,10 R. This AC is opposite to that assigned by Adesogan by comparison of the [alpha] D of oruwacin to that of the iridoid plumericin. Our results show that the assignment of the AC of a natural product by comparison of its [alpha] D to that of a chemically related molecule can be unreliable and should not be assumed to be definitive.


Assuntos
Produtos Biológicos/química , Iridoides/química , Estrutura Molecular , Morinda/química , Folhas de Planta/química , Estereoisomerismo
2.
J Org Chem ; 72(13): 4707-15, 2007 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-17516678

RESUMO

The chiral oxadiazol-3-one 2 has recently been shown to exhibit myocardial calcium entry channel blocking activity, substantially higher than that of diltiazem. To determine the enantioselectivity of this activity, the enantiomers of 2 have been resolved using chiral chromatography. The absolute configuration (AC) of 2 has been determined by comparison of density functional theory (DFT) calculations of its vibrational circular dichroism (VCD) spectrum, electronic circular dichroism (ECD) spectrum, and optical rotation (OR) to experimental VCD, ECD, and OR data. All three chiroptical properties yield identical ACs; the AC of 2 is unambiguously determined to be S(+)/R(-).


Assuntos
Bloqueadores dos Canais de Cálcio/química , Oxidiazóis/química , Cromatografia , Dicroísmo Circular , Elétrons , Modelos Moleculares , Conformação Molecular , Rotação Ocular , Espectrofotometria Infravermelho , Estereoisomerismo , Vibração
3.
J Org Chem ; 72(9): 3521-36, 2007 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-17388636

RESUMO

The absolute configurations (ACs) of the iridoid natural products, plumericin (1) and isoplumericin (2), have been re-investigated using vibrational circular dichroism (VCD) spectroscopy, electronic circular dichroism (ECD) spectroscopy, and optical rotatory dispersion (ORD). Comparison of DFT calculations of the VCD spectra of 1 and 2 to the experimental VCD spectra of the natural products, (+)-1 and (+)-2, leads unambiguously to the AC (1R,5S,8S,9S,10S)-(+) for both 1 and 2. In contrast, comparison of time-dependent DFT (TDDFT) calculations of the ECD spectra of 1 and 2 to the experimental spectra of (+)-1 and (+)-2 does not permit definitive assignment of their ACs. On the other hand, TDDFT calculations of the ORD of (1R,5S,8S,9S,10S)-1 and -2 over the range of 365-589 nm are in excellent agreement with the experimental data of (+)-1 and (+)-2, confirming the ACs derived from the VCD spectra. Thus, the ACs initially proposed by Albers-Schönberg and Schmid are shown to be correct, and the opposite ACs recently derived from the ECD spectra of 1 and 2 by Elsässer et al. are shown to be incorrect. As a result, the ACs of other iridoid natural products obtained by chemical correlation with 1 and 2 are not in need of revision.


Assuntos
Dicroísmo Circular , Indenos/química , Modelos Moleculares , Dispersão Óptica Rotatória , Iridoides/química , Modelos Químicos , Conformação Molecular , Estrutura Molecular , Rotação Ocular , Espectrofotometria Infravermelho , Vibração
4.
J Nat Prod ; 69(7): 1055-64, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16872144

RESUMO

The determination of the absolute configurations (ACs) of chiral molecules using the chiroptical techniques of optical rotation (OR), electronic circular dichroism (ECD), and vibrational circular dichroism (VCD) has been revolutionized by the development of density functional theory (DFT) methods for the prediction of these properties. Here, we demonstrate the significance of these advances for the stereochemical characterization of natural products. Time-dependent DFT (TDDFT) calculations of the specific rotations, [alpha](D), of four cytotoxic natural products, quadrone (1), suberosenone (2), suberosanone (3), and suberosenol A acetate (4), are used to assign their ACs. TDDFT calculations of the ECD of 1 are used to assign its AC. The VCD spectrum of 1 is reported and also used, together with DFT calculations, to assign its AC. The ACs of 1 derived from its [alpha](D), ECD, and VCD are identical and in agreement with the AC previously determined via total synthesis. The previously undetermined ACs of 2-4, derived from their [alpha](D) values, have absolute configurations of their tricyclic cores identical to that of 1. Further studies of the ACs of these molecules using ECD and, especially, VCD are recommended to establish more definitively this finding. Our studies of the OR, ECD, and VCD of quadrone are the first to utilize DFT calculations of all three properties for the determination of the AC of a chiral natural product molecule.


Assuntos
Antozoários/química , Antineoplásicos/química , Produtos Biológicos/química , Sesquiterpenos/química , Animais , Antineoplásicos/farmacologia , Benzopiranos/química , Benzopiranos/farmacologia , Produtos Biológicos/farmacologia , Dicroísmo Circular , Estrutura Molecular , Rotação Ocular , Sesquiterpenos/farmacologia
5.
J Am Chem Soc ; 127(18): 6700-11, 2005 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-15869292

RESUMO

The infrared (IR) and vibrational circular dichroism (VCD) spectra of S-2,2'-dimethyl-biphenyl-6,6'-dicarboxylic acid, S-1, in CDCl(3) solution are concentration-dependent, showing that oligomerization occurs with increasing concentration. DFT calculations support the conclusion that the oligomer formed is the cyclic tetramer (S-1)(4), in which S-1 monomers are linked by hydrogen(H)-bonded (COOH)(2) moieties. Due to the existence of two inequivalent tautomeric conformations of each (COOH)(2) moiety, six inequivalent conformations of (S-1)(4) are possible. B3LYP/6-31G* DFT calculations predict that the conformation "aaab", possessing three equivalent (COOH)(2) conformations, a, and one tautomeric conformation, b, has the lowest free energy. B3LYP/6-31G* IR and VCD spectra vary substantially with conformation. The B3LYP/6-31G* IR and VCD spectra of the C=O stretch modes of "aaab" are in excellent agreement with the experimental spectra, while those of all other conformations exhibit poor agreement, confirming the prediction that the "aaab" conformation is the predominant conformation. Comparison of the calculated IR and VCD spectra of the six conformations to the experimental spectra in the range 1100-1600 cm(-1) further supports this conclusion. The study is the first to use VCD spectroscopy to determine the structure of a supramolecular species.

6.
J Org Chem ; 70(10): 3903-13, 2005 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-15876078

RESUMO

[reaction: see text] The Baeyer-Villiger oxidation of (+)-(1R,5S)-bicyclo[3.3.1]nonane-2,7-dione, 1, can lead to four keto-lactone products, 2a-d. A single isomer is obtained experimentally. We have used IR and VCD spectroscopies to identify the structure of this product. DFT calculations of the IR and VCD spectra of 2a-d show unambiguously that the experimental product is (+)-(1R,6R)-2a, and not the expected product 2b. NMR studies, including comparison of DFT and experimental 1H and 13C spectra, support this conclusion. This work provides the first example of the use of VCD spectroscopy to discriminate between structural isomers of a chiral molecule. The specific rotation of (+)-(1R,6R)-2a, predicted using TDDFT methods, is negative demonstrating that absolute configurations determined from TDDFT calculations of specific rotations are not 100% reliable.

7.
J Org Chem ; 70(8): 2980-93, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15822957

RESUMO

We demonstrate that derivatization of the OH group of endo-borneol, 1, leads to conformational rigidification. Conformational analysis (CA) of 1 and its methyl, acetate, tert-butyl, and trimethylsilyl derivatives, 2-5, is carried out using ab initio density functional theory (DFT). The number of thermally accessible stable conformations is reduced from 3 in 1, to 2 in 2, and to 1 in 3-5. Comparison of IR and vibrational circular dichroism (VCD) spectra of 1 and 3-5, calculated using DFT, to experimental spectra unambiguously confirms the DFT CA. The determination of absolute configurations (ACs) of chiral molecules via analysis of chiroptical spectra using DFT methods increases in complexity and decreases in reliability as the number of populated conformations increases. Our results for endo-borneol support the conclusion that, in the case of chiral alcohols, derivatization can lead to substantial rigidification and, as a result, significantly facilitate the determination of ACs.


Assuntos
Canfanos/química , Dicroísmo Circular , Conformação Molecular , Estrutura Molecular , Estereoisomerismo
8.
J Am Chem Soc ; 126(24): 7514-21, 2004 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-15198598

RESUMO

The technique of time-dependent density functional theory (TDDFT) has very recently been applied to the calculation of both transparent spectral region optical rotations and electronic circular dichroism (CD). Here, we report the concerted application of the new methodologies to the determination of the absolute configuration (AC) of [3(2)](1,4)barrelenophanedicarbonitrile, 1, the first optically active barrelenophane. 1 is conformationally flexible: the two three-carbon bridges of 1 can each exhibit two conformations, leading to three inequivalent conformations of 1: a, b, and c. Conformational structures and energies are predicted using DFT at the B3LYP/6-31G level. Comparison of the calculated structures to structures obtained via X-ray crystallography of (+)-1 shows that (remarkably) all three conformations a-c are simultaneously present in crystalline (+)-1. The sodium D line specific rotations, [alpha](D), and CD spectra of a-c are calculated using TDDFT at the B3LYP/aug-cc-pVDZ level. Comparison of the conformationally averaged specific rotation and CD spectrum to the experimental data of Matsuda-Sentou and Shinmyozu leads to the AC 9S,12S(+)/9R,12R(-). The same AC is obtained both from [alpha](D) and from the CD, strongly supporting its reliability.

9.
Chirality ; 15 Suppl: S57-64, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12884375

RESUMO

Ab initio Density Functional Theory (DFT) calculations of transparent spectral region, discrete frequency specific rotations were used to assign the absolute configurations (ACs) of: 1, 2H-naphtho[1,8-bc]thiophene 1-oxide; 2, m-F-phenyl glycidic acid methyl ester; 3, o-Br-phenyl glycidic acid methyl ester; 4, p-CH(3)-phenyl glycidic acid methyl ester; 5, 2-(1-hydroxyethyl)-chromen-4-one; and 6, 6-Br-2-(1-hydroxyethyl)-chromen-4-one. The ACs of 5 and 6 were previously determined via X-ray crystallography to be: 5, R(-)/S(+); 6, R(+)/S(-). The ACs obtained using [alpha](D) are the same for both 5 and 6: R(+)/S(-). We conclude that the previously reported AC of 5 is incorrect.

10.
Org Lett ; 4(26): 4595-8, 2002 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-12489938

RESUMO

[structure: see text] We report the first determinations of the absolute configurations (ACs) of chiral molecules using discrete frequency, transparent spectral region optical rotations calculated using density functional theory (DFT). The ACs of 2H-naphtho[1,8-bc]thiophene 1-oxide (3), naphtho[1,8-cd]-1,2-dithiole 1-oxide (4), and 9-phenanthryl methyl sulfoxide (5) are determined by comparison of their specific rotations to values calculated via the time-dependent DFT/gauge-invariant atomic orbital (TDDFT/GIAO) methodology using the B3LYP functional and the aug-cc-pVDZ basis set.

11.
J Org Chem ; 67(23): 8090-6, 2002 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-12423137

RESUMO

The chiral monosubstituted derivatives of spiropentane, spiropentylcarboxylic acid methyl ester, 1, and spiropentyl acetate, 2, have been synthesized in optically active form. Configurational and conformational analysis of 1 and 2 has been carried out using infrared (IR) and vibrational circular dichroism (VCD) spectroscopies. Analysis of the experimental IR and VCD spectra has been carried out using ab initio density functional theory (DFT). For both 1 and 2, DFT predicts two populated conformations. Comparison to experiment of the conformationally averaged IR and VCD spectra of 1 and 2, predicted using DFT, provides unequivocal evidence of the predicted conformations and yields the absolute configurations R(-)/S(+) for 1 and R(+)/S(-) for 2. These absolute configurations are consistent with the R(-)/S(+) absolute configuration of spiropentylcarboxylic acid, assigned previously via X-ray crystallography of its alpha-phenylethylammonium salt.

12.
Chirality ; 14(5): 400-6, 2002 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-11984755

RESUMO

We reexamined the absolute configuration (AC) of the chiral sulfoxide 1-thiochromanone S-oxide (1) using vibrational circular dichroism (VCD) spectroscopy. The VCD spectrum of 1 was analyzed using density functional theory (DFT). DFT predicts two stable conformations of 1, separated by <1 kcal/mole. Their VCD spectra were calculated using the DFT/GIAO methodology. The VCD spectrum predicted for the equilibrium mixture of the two conformations of (S)-1 is in excellent agreement with the experimental spectrum of (+)-1. The AC of 1 is therefore definitively R(-)/S(+).

13.
Chirality ; 14(4): 288-96, 2002 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-11968068

RESUMO

We report ab initio calculations of the frequency-dependent electric dipole-magnetic dipole polarizabilities, beta(nu), at the sodium D line frequency and, thence, of the specific rotations, [alpha](D), of 2,7,8-trioxabicyclo[3.2.1]octane, 1, and its 1-methyl derivative, 2, using the Density Functional Theory (DFT) and Hartree-Fock/Self-Consistent Field (HF/SCF) methodologies. Gauge-invariant (including) atomic orbitals (GIAOs) are used to ensure origin-independent [alpha](D) values. Using large basis sets which include diffuse functions DFT [alpha](D) values are in good agreement with experimental values (175.8 degrees and 139.2 degrees for (1S,5R)-1 and -2, respectively); errors are in the range 25-35 degrees. HF/SCF [alpha](D) values, in contrast, are much less accurate; errors are in the range 75-95 degrees. The use of small basis sets which do not include diffuse functions substantially lowers the accuracy of predicted [alpha](D) values, as does the use of the static limit approximation: beta(nu) approximately beta(o). The use of magnetic-field-independent atomic orbitals, FIAOs, instead of GIAOs, leads to origin-dependent, and therefore nonphysical, [alpha](D) values. We also report DFT calculations of [alpha](D) for the 1-phenyl derivative of 1, 3. DFT calculations find two stable conformations, differing in the orientation of the phenyl group, of very similar energy, and separated by low barriers. Values of [alpha](D) predicted using two different algorithms for averaging over phenyl group orientations are in good agreement with experiment. In principle, the absolute configuration (AC) of a chiral molecule can be assigned by comparison of the optical rotation predicted ab initio to the experimental value. Our results demonstrate the critical importance of the choice of ab initio methodology in obtaining reliable optical rotations and, hence, ACs, and show that, at the present time, DFT constitutes the method of choice.

14.
J Org Chem ; 66(11): 3671-7, 2001 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-11374983

RESUMO

We report the determination of the absolute configuration (AC) of the chiral sulfoxide, 1-(2-methylnaphthyl) methyl sulfoxide, 1, using vibrational circular dichroism (VCD) spectroscopy. The VCD of 1 has been measured in the mid-IR spectral region in CCl(4) solution. Analysis employs the ab initio DFT/GIAO methodology. DFT calculations predict two stable conformations of 1, E and Z, Z being lower in energy than E by <1 kcal/mol. In both conformations the S-O bond is rotated from coplanarity with the naphthyl moiety by 30-40 degrees. The predicted unpolarized absorption ("IR") spectrum of the equilibrium mixture of the two conformations permits assignment of the experimental IR spectrum in the mid-IR spectral region. The presence of both E and Z conformations is clearly evident. The VCD spectrum predicted for S-1 is in excellent agreement with the experimental spectrum of (-)-1, unambiguously defining the AC of 1 as R(+)/S(-).

15.
Chirality ; 12(4): 172-9, 2000 May.
Artigo em Inglês | MEDLINE | ID: mdl-10790187

RESUMO

We discuss the theoretical prediction of vibrational circular dichroism (VCD) spectra using ab initio density functional theory (DFT) and the application of this methodology to the determination of the absolute configurations and conformations of chiral molecules.


Assuntos
Dicroísmo Circular , Estrutura Molecular , Estereoisomerismo , Vibração
16.
Chemistry ; 6(24): 4479-86, 2000 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-11192080

RESUMO

Mid-infrared vibrational unpolarised absorption and vibrational circular dichroism (VCD) spectra of CCl4 solutions of tert-butyl methyl sulfoxide (1) are reported. The spectra are compared to ab initio density functional theory (DFT) calculations carried out using two functionals, B3PW91 and B3LYP, and two basis sets, 6-31G* and TZ2P. The VCD spectra are calculated using Gauge-invariant atomic orbitals (GIAOs). The analysis of the VCD spectrum confirms the R(-)/S(+) absolute configuration of 1. The advantages and disadvantages of VCD spectroscopy in determining the absolute configurations of chiral sulfoxides are discussed.


Assuntos
Sulfóxidos/química , Dicroísmo Circular , Conformação Molecular , Vibração
17.
Biochemistry ; 30(13): 3200-9, 1991 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-2009261

RESUMO

Room temperature circular dichroism (CD) and low temperature magnetic circular dichroism (MCD) spectra of air-oxidized and dithionite-reduced Azotobacter vinelandii ferredoxin I (FdI), a [( 4Fe-4S]2+/1+, [3Fe-4S]1+/0) protein, are reported. Unlike the CD of oxidized FdI, the CD of dithionite-reduced FdI exhibits significant pH dependence, consistent with protonation-deprotonation at or near the cluster reduced: the [3Fe-4S] cluster. The MCD of reduced FdI, which originates in the paramagnetic reduced [3Fe-4S]0 cluster, is also pH-dependent. Detailed studies of the field dependence and temperature dependence of the MCD of oxidized and reduced FdI, in the latter case at pH 6.0 and 8.3, are reported. The low-field temperature dependence of the MCD of oxidized FdI, which originates in the paramagnetic oxidized [3Fe-4S]1+ cluster, establishes the absence of a significant population of excited electronic states of this cluster up to 60 K. The low-field temperature dependence of the MCD of reduced FdI establishes that the ground-state manifold of the reduced [3Fe-4S]0 cluster possesses S greater than or equal to 2 at both pH 6.0 and 8.3. Analysis, assuming S = 2 and an axial zero-field splitting Hamiltonian, leads to D = -2.0 and -3.5 cm-1 at pH 6.0 and 8.3, respectively. The site of the (de)protonation affecting the spectroscopic properties of the [3Fe-4S] cluster remains unknown.


Assuntos
Azotobacter/metabolismo , Ferredoxinas/química , Dicroísmo Circular , Ferredoxinas/isolamento & purificação , Matemática , Conformação Proteica , Espectrofotometria , Termodinâmica
18.
Biochemistry ; 28(20): 8033-9, 1989 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-2557894

RESUMO

Room temperature near-infrared magnetic circular dichroism and low-temperature electron paramagnetic resonance measurements have been used to characterize the ligands of the heme iron in mitochondrial cytochromes c, c1, and b and in cytochrome f of the photosynthetic electron transport chain. The MCD data show that methionine is the sixth ligand of the heme of oxidized yeast cytochrome c1; the identify of this residue is inferred to be the single conserved methionine identified from a partial alignment of the available cytochrome c1 amino acid sequences. A different residue, which is most likely lysine, is the sixth heme ligand in oxidized spinach cytochrome f. The data for oxidized yeast cytochrome b are consistent with bis-histidine coordination of both hemes although the possibility that one of the hemes is ligated by histidine and lysine cannot be rigorously excluded. The neutral and alkaline forms of oxidized yeast cytochrome c have spectroscopic properties very similar to those of the horse heart proteins, and thus, by analogy, the sixth ligands are methionine and lysine, respectively.


Assuntos
Citocromos/análise , Heme/análise , Plantas/enzimologia , Leveduras/enzimologia , Sequência de Aminoácidos , Dicroísmo Circular , Grupo dos Citocromos b/análise , Grupo dos Citocromos c/análise , Citocromos c1/análise , Citocromos f , Espectroscopia de Ressonância de Spin Eletrônica , Ligantes , Espectroscopia de Ressonância Magnética , Mitocôndrias/enzimologia , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...