Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fish Biol ; 103(1): 73-90, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37088957

RESUMO

Apristurus ovicorrugatus, a new species of deepwater catshark, is described from northwestern Australia. Unique egg cases belonging to an unknown species of Apristurus prompted a more detailed investigation of Apristurus specimens off northwestern Australia. One specimen previously identified as A. sinensis collected off Dampier Archipelago was found gravid with a single egg case. Removal of this egg case confirmed that this species was responsible for producing the unique egg cases previously recorded. The egg cases of this species have strong T-shaped longitudinal ridges on the dorsal and ventral surfaces which are unique in the genus Apristurus. The ridges most closely resemble those present in Bythaelurus canescens from South America, but are larger and always T-shaped. The holotype is closest morphologically to A. sinensis but differs in having a medium brown buccal cavity (vs. jet black), ridged egg cases (vs. smooth egg cases), fewer intestinal spiral valve turns and larger pectoral fins. The holotype is also similar, and closest on a molecular level, to A. nakayai with which it shares a unique synapomorphic character, the white shiny iris (apomorphic within the genus). A late-term embryo removed from an egg case superficially resembled the holotype except in having two parallel rows of enlarged dermal denticles on the dorsolateral predorsal surface. Recent nomenclatural changes to the genera Apristurus and Pentanchus are discussed and challenged. This study highlights the important contribution that egg case morphology has on oviparous elasmobranch taxonomy.


Assuntos
Tubarões , Animais , Tubarões/anatomia & histologia , América do Sul , Austrália
2.
Ecol Evol ; 13(2): e9837, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36844667

RESUMO

The Bull Shark (Carcharhinus leucas) faces varying levels of exploitation around the world due to its coastal distribution. Information regarding population connectivity is crucial to evaluate its conservation status and local fishing impacts. In this study, we sampled 922 putative Bull Sharks from 19 locations in the first global assessment of population structure of this cosmopolitan species. Using a recently developed DNA-capture approach (DArTcap), samples were genotyped for 3400 nuclear markers. Additionally, full mitochondrial genomes of 384 Indo-Pacific samples were sequenced. Reproductive isolation was found between and across ocean basins (eastern Pacific, western Atlantic, eastern Atlantic, Indo-West Pacific) with distinct island populations in Japan and Fiji. Bull Sharks appear to maintain gene flow using shallow coastal waters as dispersal corridors, whereas large oceanic distances and historical land-bridges act as barriers. Females tend to return to the same area for reproduction, making them more susceptible to local threats and an important focus for management actions. Given these behaviors, the exploitation of Bull Sharks from insular populations, such as Japan and Fiji, may instigate local decline that cannot readily be replenished by immigration, which can in turn affect ecosystem dynamics and functions. These data also supported the development of a genetic panel to ascertain the population of origin, which will be useful in monitoring the trade of fisheries products and assessing population-level impacts of this harvest.

3.
Mol Ecol ; 32(5): 1000-1019, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36511846

RESUMO

The blue shark Prionace glauca is a top predator with one of the widest geographical distributions of any shark species. It is classified as Critically Endangered in the Mediterranean Sea, and Near Threatened globally. Previous genetic studies did not reject the null hypothesis of a single global population. The blue shark was proposed as a possible archetype of the "grey zone of population differentiation," coined to designate cases where population structure may be too recent or too faint to be detected using a limited set of markers. Here, blue shark samples collected throughout its global range were sequenced using a specific RAD method (DArTseq), which recovered 37,655 genome-wide single nucleotide polymorphisms (SNPs). Two main groups emerged, with Mediterranean Sea and northern Atlantic samples (Northern population) differentiated significantly from the Indo-west Pacific samples (Southern population). Significant pairwise FST values indicated further genetic differentiation within the Atlantic Ocean, and between the Atlantic Ocean and the Mediterranean Sea. Reconstruction of recent demographic history suggested divergence between Northern and Southern populations occurred about 500 generations ago and revealed a drastic reduction in effective population size from a large ancestral population. Our results illustrate the power of genome scans to detect population structure and reconstruct demographic history in highly migratory marine species. Given that the management plans of the blue shark (targeted or bycatch) fisheries currently assume panmictic regional stocks, we strongly recommend that the results presented here be considered in future stock assessments and conservation strategies.


Assuntos
Polimorfismo de Nucleotídeo Único , Tubarões , Animais , Polimorfismo de Nucleotídeo Único/genética , Tubarões/genética , Densidade Demográfica , Deriva Genética , Oceano Atlântico
4.
Mol Ecol Resour ; 20(6): 1470-1485, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32492756

RESUMO

With recent advances in sequencing technology, genomic data are changing how important conservation management decisions are made. Applications such as Close-Kin Mark-Recapture demand large amounts of data to estimate population size and structure, and their full potential can only be realised through ongoing improvements in genotyping strategies. Here we introduce DArTcap, a cost-efficient method that combines DArTseq and sequence capture, and illustrate its use in a high resolution population analysis of Glyphis garricki, a rare, poorly known and threatened euryhaline shark. Clustering analyses and spatial distribution of kin pairs from four different regions across northern Australia and one in Papua New Guinea, representing its entire known range, revealed that each region hosts at least one distinct population. Further structuring is likely within Van Diemen Gulf, the region that included the most rivers sampled, suggesting additional population structuring would be found if other rivers were sampled. Coalescent analyses and spatially explicit modelling suggest that G. garricki experienced a recent range expansion during the opening of the Gulf of Carpentaria following the conclusion of the Last Glacial Maximum. The low migration rates between neighbouring populations of a species that is found only in restricted coastal and riverine habitats show the importance of managing each population separately, including careful monitoring of local and remote anthropogenic activities that may affect their environments. Overall we demonstrated how a carefully chosen SNP panel combined with DArTcap can provide highly accurate kinship inference and also support population structure and historical demography analyses, therefore maximising cost-effectiveness.


Assuntos
Genética Populacional , Tubarões , Animais , Austrália , Genótipo , Papua Nova Guiné , Dinâmica Populacional , Rios , Tubarões/genética
5.
Ecol Evol ; 9(8): 4465-4472, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31031920

RESUMO

Fishing represents a major problem for conservation of chondrichthyans, with a quarter of all species being overexploited. School sharks, Galeorhinus galeus, are targeted by commercial fisheries in Australia and New Zealand. The Australian stock has been depleted to below 20% of its virgin biomass, and the species is recorded as Conservation Dependent within Australia. Individuals are known to move between both countries, but it is disputed whether the stocks are reproductively linked. Accurate and unbiased determination of stock and population connectivity is crucial to inform effective management. In this study, we assess the genetic composition and population connectivity between Australian and New Zealand school sharks using genome-wide SNPs, while accounting for non-random kin sampling. Between 2009 and 2013, 88 neonate and juvenile individuals from Tasmanian and New Zealand nurseries were collected and genotyped. Neutral loci were analyzed to detect fine-scale signals of reproductive connectivity. Seven full-sibling groups were identified and removed for unbiased analysis. Based on 6,587 neutral SNPs, pairwise genetic differentiation from Tasmanian and New Zealand neonates was non-significant (F ST = 0.0003, CI95 = [-0.0002, 0.0009], p = 0.1163; D est = 0.0006 ± 0.0002). This pattern was supported by clustering results. In conclusion, we show a significant effect of non-random sampling of kin and identify fine-scale reproductive connectivity between Australian and New Zealand school sharks. OPEN RESEARCH BADGES: This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at https://doi.org/10.5061/dryad.pd8612j.

6.
Ecol Evol ; 8(18): 9503-9515, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30377518

RESUMO

Developing efficient, reliable, cost-effective ways to identify diet is required to understand trophic ecology in complex ecosystems and improve food web models. A combination of techniques, each varying in their ability to provide robust, spatially and temporally explicit information can be applied to clarify diet data for ecological research. This study applied an integrative analysis of a fishery-targeted species group-Plectropomus spp. in the central Great Barrier Reef, Australia, by comparing three diet-identification approaches. Visual stomach content analysis provided poor identification with ~14% of stomachs sampled resulting in identification to family or lower. A molecular approach was successful with prey from ~80% of stomachs identified to genus or species, often with several unique prey in a stomach. Stable isotope mixing models utilizing experimentally derived assimilation data, identified similar prey as the molecular technique but at broader temporal scales, particularly when prior diet information was incorporated. Overall, Caesionidae and Pomacentridae were the most abundant prey families (>50% prey contribution) for all Plectropomus spp., highlighting the importance of planktivorous prey. Less abundant prey categories differed among species/color phases indicating possible niche segregation. This study is one of the first to demonstrate the extent of taxonomic resolution provided by molecular techniques, and, like other studies, illustrates that temporal investigations of dietary patterns are more accessible in combination with stable isotopes. The consumption of mainly planktivorous prey within this species group has important implications within coral reef food webs and provides cautionary information regarding the effects that changing resources could have in reef ecosystems.

7.
Mar Pollut Bull ; 105(1): 23-9, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26971231

RESUMO

DNA efficiently contributes to detect and understand marine invasions. In 2014 the potential biological pollutant pygmy mussel (Xenostrobus securis) was observed for the first time in the Avilés estuary (Asturias, Bay of Biscay). The goal of this study was to assess the stage of invasion, based on demographic and genetic (DNA Barcoding) characteristics, and to develop a molecular tool for surveying the species in environmental DNA. A total of 130 individuals were analysed for the DNA Barcode cytochrome oxidase I gene in order to determine genetic diversity, population structure, expansion trends, and to inferring introduction hits. Reproduction was evidenced by bimodal size distributions of 1597 mussels. High population genetic variation and genetically distinct clades might suggest multiple introductions from several source populations. Finally, species-specific primers were developed within the DNA barcode for PCR amplification from water samples in order to enabling rapid detection of the species in initial expansion stages.


Assuntos
Código de Barras de DNA Taxonômico , Monitoramento Ambiental , Mytilidae/genética , Animais , Primers do DNA/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Estuários , Variação Genética , Genética Populacional , Mytilidae/classificação , Reação em Cadeia da Polimerase , Espanha , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...