Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Part Fibre Toxicol ; 20(1): 27, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443115

RESUMO

BACKGROUND: Edible gold (Au) is commonly used as a food additive (E175 in EU) for confectionery and cake decorations, coatings and in beverages. Food-grade gold is most often composed of thin Au sheets or flakes exhibiting micro- and nanometric dimensions in their thickness. Concerns about the impact of mineral particles used as food additives on human health are increasing with respect to the particular physico-chemical properties of nanosized particles, which enable them to cross biological barriers and interact with various body cell compartments. In this study, male and female mice were exposed daily to E175 or an Au nanomaterial (Ref-Au) incorporated into food at relevant human dose for 90 days in order to determine the potential toxicity of edible gold. RESULTS: E175 or Ref-Au exposure in mice did not induce any histomorphological damage of the liver, spleen or intestine, nor any genotoxic effects in the colon and liver despite an apparent higher intestinal absorption level of Au particles in mice exposed to Ref-Au compared to the E175 food additive. No changes in the intestinal microbiota were reported after treatment with Ref-Au, regardless of sex. In contrast, after E175 exposure, an increase in the Firmicutes/Bacteroidetes ratio and in the abundance of Proteobacteria were observed in females, while a decrease in the production of short-chain fatty acids occurred in both sexes. Moreover, increased production of IL-6, TNFα and IL-1ß was observed in the colon of female mice at the end of the 90-day exposure to E175, whereas, decreased IL-6, IL-1ß, IL-17 and TGFß levels were found in the male colon. CONCLUSIONS: These results revealed that a 90-day exposure to E175 added to the diet alters the gut microbiota and intestinal immune response in a sex-dependent manner in mice. Within the dose range of human exposure to E175, these alterations remained low in both sexes and mostly appeared to be nontoxic. However, at the higher dose, the observed gut dysbiosis and the intestinal low-grade inflammation in female mice could favour the occurrence of metabolic disorders supporting the establishment of toxic reference values for the safe use of gold as food additive.


Assuntos
Microbioma Gastrointestinal , Humanos , Camundongos , Masculino , Feminino , Animais , Ouro , Interleucina-6 , Sistema Imunitário , Aditivos Alimentares/toxicidade
2.
Nanotoxicology ; 17(4): 289-309, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37194738

RESUMO

The whitening and opacifying agent titanium dioxide (TiO2) is used worldwide in various foodstuffs, toothpastes and pharmaceutical tablets. Its use as a food additive (E171 in EU) has raised concerns for human health. Although the buccal mucosa is the first area exposed, oral transmucosal passage of TiO2 particles has not been documented. Here we analyzed E171 particle translocation in vivo through the pig buccal mucosa and in vitro on human buccal TR146 cells, and the effects on proliferating and differentiated TR146 cells. In the buccal floor of pigs, isolated TiO2 particles and small aggregates were observed 30 min after sublingual deposition, and were recovered in the submandibular lymph nodes at 4 h. In TR146 cells, kinetic analyses showed high absorption capacities of TiO2 particles. The cytotoxicity, genotoxicity and oxidative stress were investigated in TR146 cells exposed to E171 in comparison with two TiO2 size standards of 115 and 21 nm in diameter. All TiO2 samples were reported cytotoxic in proliferating cells but not following differentiation. Genotoxicity and slight oxidative stress were reported for the E171 and 115 nm TiO2 particles. These data highlight the buccal mucosa as an absorption route for the systemic passage of food-grade TiO2 particles. The greater toxicity on proliferating cells suggest potential impairement of oral epithelium renewal. In conclusion, this study emphasizes that buccal exposure should be considered during toxicokinetic studies and for risk assessment of TiO2 in human when used as food additive, including in toothpastes and pharmaceutical formulations.


Assuntos
Mucosa Bucal , Nanopartículas , Humanos , Animais , Suínos , Cremes Dentais , Tamanho da Partícula , Titânio/toxicidade , Aditivos Alimentares/toxicidade , Preparações Farmacêuticas , Epitélio , Nanopartículas/toxicidade
3.
Ultramicroscopy ; 226: 113300, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33984665

RESUMO

Scanning Electron Microscopy (SEM) technique is widely used to characterize nanoparticle (NP) size. The landing energy (LE) of the primary electron beam is considered to be a key parameter related to the ability of electrons to penetrate the sample. However, few studies have been carried out so far on the influence of this parameter on the measurement of NP size by SEM. The increasing needs for reference materials consisting of size-controlled NP suspension for microscope calibration induce new issues. This paper focuses on the effect of electron landing energy on the measurement of the equivalent diameter of several NP populations by SEM. To evaluate the influence of LE, particles of different sizes and chemical compositions were analyzed. The results showed the variation of the measured diameter as a function of LE. SEM secondary electron (SE) yield modeling by the Monte Carlo method allowed us to relate this variation to the information volume in the material. Finally, the use of reference particles and transmission electron microscopy (TEM) allowed us to determine an optimal value of LE to be applied, depending on the chemical composition and particle size to limit the bias in the SEM measurement. We showed that this operating point can be simply determined without reference nanomaterials by scanning an LE range.

4.
Ultramicroscopy ; 207: 112847, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31586828

RESUMO

Scanning Electron Microscopy (SEM) is considered as a reference technique for the determination of nanoparticle (NP) dimensional properties. Nevertheless, the image analysis is a critical step of SEM measuring process and the initial segmentation phase consisting in determining the contour of each nano-object to be measured must be correctly carried out in order to identify all pixels belonging to it. Several techniques can be applied to extract NP from SEM images and evaluate their diameter like thresholding or watershed. However, due to the lack of reference nanomaterials, few papers deals with the uncertainty associated with these segmentation methods. This article proposes a novel approach to extract the NP boundaries from SEM images using a remarkable point. The method is based on the observation that, by varying the electron beam size, the secondary electron profiles crosses each other at this point. First, a theoretical study has been performed using Monte Carlo simulation on silica NP to evaluate the robustness of the method compared with more conventional segmentation techniques (Active Contour or binarization at Full Width at Half-Maximum, FWHM). The simulation results show especially a systematic discrepancy between the NP real size and the measurements performed with both conventional methods. Moreover, generated errors are NP size-dependent. By contrast, it has been demonstrated that a very good agreement between measured and simulated diameters has been obtained with this new technique. As an example, this method of the remarkable point has been applied on SEM images of silica particles. The quality of the segmentation has been shown on silica reference nanoparticles by measuring the modal equivalent projected area diameter and comparing with calibration certificate. The results show that the NP contour can be very accurately delimited with using this point. The measurement uncertainty has been also reduced from 4.3 nm (k = 2) with conventional methods to 2.6 nm (k = 2) using the remarkable point.

5.
Beilstein J Nanotechnol ; 10: 1523-1536, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31431864

RESUMO

At this time, there is no instrument capable of measuring a nano-object along the three spatial dimensions with a controlled uncertainty. The combination of several instruments is thus necessary to metrologically characterize the dimensional properties of a nano-object. This paper proposes a new approach of hybrid metrology taking advantage of the complementary nature of atomic force microscopy (AFM) and scanning electron microscopy (SEM) techniques for measuring the main characteristic parameters of nanoparticle (NP) dimensions in 3D. The NP area equivalent, the minimal and the maximal Feret diameters are determined by SEM and the NP height is measured by AFM. In this context, a kind of new NP repositioning system consisting of a lithographed silicon substrate has been specifically developed. This device makes it possible to combine AFM and SEM size measurements performed exactly on the same set of NPs. In order to establish the proof-of-concept of this approach and assess the performance of both instruments, measurements were carried out on several samples of spherical silica NP populations ranging from 5 to 110 nm. The spherical nature of silica NPs imposes naturally the equality between their height and their lateral diameters. However, discrepancies between AFM and SEM measurements have been observed, showing significant deviation from sphericity as a function of the nanoparticle size.

6.
Environ Toxicol Chem ; 37(4): 1007-1013, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29193218

RESUMO

The combined influence of oxygenation and salinity on agglomeration and/or aggregation kinetics of the silver (Ag) nanomaterial NM-300K was investigated, and the relationship between its physicochemical fate and toxicity toward an estuarine bivalve was established. The results showed that the presence of NaCl under certain oxygen conditions (8.5 ppm) promoted the formation of AgCl aggregates that could be linked to toxicity effects on aquatic organisms. Environ Toxicol Chem 2018;37:1007-1013. © 2017 SETAC.


Assuntos
Nanoestruturas/química , Oxigênio/química , Salinidade , Prata/química , Animais , Bivalves/metabolismo , Cinética , Nanopartículas Metálicas/química , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Fatores de Tempo , Água/química , Poluentes Químicos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA