Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucleic Acid Ther ; 33(4): 248-264, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37389884

RESUMO

Uveal melanoma (UM) is the most common primary intraocular malignancy in adults. Owing to a lack of effective treatments, patients with metastatic disease have a median survival time of 6-12 months. We recently demonstrated that the Survival Associated Mitochondrial Melanoma Specific Oncogenic Non-coding RNA (SAMMSON) is essential for UM cell survival and that antisense oligonucleotide (ASO)-mediated silencing of SAMMSON impaired cell viability and tumor growth in vitro and in vivo. By screening a library of 2911 clinical stage compounds, we identified the mammalian target of rapamycin (mTOR) inhibitor GDC-0349 to synergize with SAMMSON inhibition in UM. Mechanistic studies revealed that mTOR inhibition enhanced uptake and reduced lysosomal accumulation of lipid complexed SAMMSON ASOs, improving SAMMSON knockdown and further decreasing UM cell viability. We found mTOR inhibition to also enhance target knockdown in other cancer cell lines as well as normal cells when combined with lipid nanoparticle complexed or encapsulated ASOs or small interfering RNAs (siRNAs). Our results are relevant to nucleic acid treatment in general and highlight the potential of mTOR inhibition to enhance ASO and siRNA-mediated target knockdown.


Assuntos
Melanoma , Oligonucleotídeos Antissenso , Humanos , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Linhagem Celular Tumoral , Melanoma/tratamento farmacológico , Melanoma/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , RNA Interferente Pequeno/uso terapêutico
2.
Oncogene ; 41(1): 15-25, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34508176

RESUMO

Long non-coding RNAs (lncRNAs) can exhibit cell-type and cancer-type specific expression profiles, making them highly attractive as therapeutic targets. Pan-cancer RNA sequencing data revealed broad expression of the SAMMSON lncRNA in uveal melanoma (UM), the most common primary intraocular malignancy in adults. Currently, there are no effective treatments for UM patients with metastatic disease, resulting in a median survival time of 6-12 months. We aimed to investigate the therapeutic potential of SAMMSON inhibition in UM. Antisense oligonucleotide (ASO)-mediated SAMMSON inhibition impaired the growth and viability of a genetically diverse panel of uveal melanoma cell lines. These effects were accompanied by an induction of apoptosis and were recapitulated in two uveal melanoma patient derived xenograft (PDX) models through subcutaneous ASO delivery. SAMMSON pulldown revealed several candidate interaction partners, including various proteins involved in mitochondrial translation. Consequently, inhibition of SAMMSON impaired global, mitochondrial and cytosolic protein translation levels and mitochondrial function in uveal melanoma cells. The present study demonstrates that SAMMSON expression is essential for uveal melanoma cell survival. ASO-mediated silencing of SAMMSON may provide an effective treatment strategy to treat primary and metastatic uveal melanoma patients.


Assuntos
Sobrevivência Celular/genética , Melanoma/mortalidade , RNA Longo não Codificante/metabolismo , Neoplasias Uveais/mortalidade , Animais , Linhagem Celular Tumoral , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA