Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Trials ; 24(1): 809, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104131

RESUMO

BACKGROUND: Prostate cancer remains the most prevalent malignancy and the second-leading cause of cancer-related death in men in the USA. Radiation therapy, typically with androgen suppression, remains a mainstay in the treatment of intermediate- and high-risk, potentially lethal prostate cancers. However, local recurrence and treatment failure remain common. Basic and translational research has determined the potential for using androgen receptor (AR) ligands (e.g., dihydrotestosterone and flutamide) in the context of androgen-deprived prostate cancer to induce AR- and TOP2B-mediated DNA double-strand breaks (DSBs) and thereby synergistically enhance the effect of radiation therapy (RT). The primary aim of this study is to carry out pharmacodynamic translation of these findings to humans. METHODS: Patients with newly diagnosed, biopsy-confirmed localized prostatic adenocarcinoma will be recruited. Flutamide, an oral non-steroidal androgen receptor ligand, will be administered orally 6-12 h prior to prostate biopsy (performed under anesthesia prior to brachytherapy seed implantation). Key study parameters will include the assessment of DNA double-strand breaks by γH2A.x foci and AR localization to the nucleus. The initial 6 patients will be treated in a single-arm run-in phase to assess futility by establishing whether at least 2 subjects from this group develop γH2A.x foci in prostate cancer cells. If this criterion is met, the study will advance to a two-arm, randomized controlled phase in which 24 participants will be randomized 2:1 to either flutamide intervention or placebo standard-of-care (with all patients receiving definitive brachytherapy). The key pharmacodynamic endpoint will be to assess whether the extent of γH2A.x foci (proportion of cancer cells positive and number of foci per cancer cell) is greater in patients receiving flutamide versus placebo. Secondary outcomes of this study include an optional, exploratory analysis that will (a) describe cancer-specific methylation patterns of cell-free DNA in plasma and urine and (b) assess the utility of serum and urine samples as a DNA-based biomarker for tracking therapeutic response. DISCUSSION: This study will confirm in humans the pharmacodynamic effect of AR ligands to induce transient double-strand breaks when administered in the context of androgen deprivation as a novel therapy for prostate cancer. The findings of this study will permit the development of a larger trial evaluating flutamide pulsed-dose sequencing in association with fractionated external beam RT (+/- brachytherapy). The study is ongoing, and preliminary data collection and recruitment are underway; analysis has yet to be performed. TRIAL REGISTRATION: ClinicalTrials.gov NCT03507608. Prospectively registered on 25 April 2018.


Assuntos
Flutamida , Neoplasias da Próstata , Masculino , Humanos , Flutamida/uso terapêutico , Androgênios , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Antagonistas de Androgênios/uso terapêutico , Receptores Androgênicos , Ligantes , Estudos Prospectivos , Resultado do Tratamento , DNA , Ensaios Clínicos Controlados Aleatórios como Assunto
2.
bioRxiv ; 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37905029

RESUMO

The tissue microenvironment in prostate cancer is profoundly altered. While such alterations have been implicated in driving prostate cancer initiation and progression to aggressive disease, how prostate cancer cells and their precursors mediate those changes is unclear, in part due to the inability to longitudinally study the disease evolution in human tissues. To overcome this limitation, we performed extensive single-cell RNA-sequencing (scRNA-seq) and rigorous molecular pathology of the comparative biology between human prostate cancer and key time points in the disease evolution of a genetically engineered mouse model (GEMM) of prostate cancer. Our studies of human tissues, with validation in a large external data set, revealed that cancer cell-intrinsic activation of MYC signaling was the top up-regulated pathway in human cancers, representing a common denominator across the well-known molecular and pathological heterogeneity of human prostate cancer. Likewise, numerous non-malignant cell states in the tumor microenvironment (TME), including non-cancerous epithelial, immune, and fibroblast cell compartments, were conserved across individuals, raising the possibility that these cell types may be a sequelae of the convergent MYC activation in the cancer cells. To test this hypothesis, we employed a GEMM of prostate epithelial cell-specific MYC activation in two mouse strains. Cell communication network and pathway analyses suggested that MYC oncogene-expressing neoplastic cells, directly and indirectly, reprogrammed the TME during carcinogenesis, leading to the emergence of cascading cell state alterations in neighboring epithelial, immune, and fibroblast cell types that paralleled key findings in human prostate cancer. Importantly, among these changes, the progression from a precursor-enriched to invasive-cancer-enriched state was accompanied by a cell-intrinsic switch from pro-immunogenic to immunosuppressive transcriptional programs with coinciding enrichment of immunosuppressive myeloid and Treg cells in the immune microenvironment. These findings implicate activation of MYC signaling in reshaping convergent aspects of the TME of prostate cancer as a common denominator across the otherwise well-documented molecular heterogeneity of human prostate cancer.

3.
Int J Radiat Oncol Biol Phys ; 116(1): 17-27, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36736631

RESUMO

PURPOSE: Prior efforts to characterize disparities in radiation therapy access and receipt have not comprehensively investigated interplay between race, socioeconomic status, and geography relative to oncologic outcomes. This study sought to define these complex relationships at the US county level for prostate cancer (PC) and invasive breast (BC) cancer to build a tool that facilitates identification of "radiotherapy deserts"-regions with mismatch between radiation therapy resources and oncologic need. METHODS AND MATERIALS: An ecologic study model was constructed using national databases to evaluate 3,141 US counties. Radiation therapy resources and use densities were operationalized as physicians to persons at risk (PPR) and use to persons at risk (UPR): the number of attending radiation oncologists and Medicare beneficiaries per 100,000 persons at risk, respectively. Oncologic need was defined by "hot zone" counties with ≥2 standard deviations (SDs) above mean incidence and death rates. Univariable and multivariable logistic regressions examined links between PPR and UPR densities, epidemiologic variables, and hot zones for oncologic outcomes. Statistics are reported at a significance level of P < .05. RESULTS: The mean (SD) PPR and UPR densities were 2.1 (5.9) and 192.6 (557.6) for PC and 1.9 (5.3) and 174.4 (501.0) for BC, respectively. Counties with high PPR and UPR densities were predominately metropolitan (odds ratio [OR], 2.9-4.4), generally with a higher percentage of Black non-Hispanic constituents (OR, 1.5-2.3). Incidence and death rate hot zones were largely nonmetropolitan (OR, 0.3-0.6), generally with a higher percentage of Black non-Hispanic constituents (OR, 3.2-6.3). Lower PPR density was associated with death rate hot zones for both types of cancer (OR, 0.8-0.9); UPR density was generally not linked to oncologic outcomes on multivariable analysis. CONCLUSIONS: The study found that mismatch between oncologic need with PPR and UPR disproportionately affects nonmetropolitan communities with a higher percentage of Black non-Hispanic constituents. An interactive web platform (bit.ly/densitymaps) was developed to visualize "radiotherapy deserts" and drive targeted investigation of underlying barriers to care in areas of highest need, with the goal of reducing health inequities in this context.


Assuntos
Disparidades em Assistência à Saúde , Neoplasias , Radioterapia , Idoso , Humanos , Masculino , Medicare/estatística & dados numéricos , Neoplasias/economia , Neoplasias/epidemiologia , Neoplasias/etnologia , Neoplasias/radioterapia , Pobreza/estatística & dados numéricos , População Rural/estatística & dados numéricos , Classe Social , Estados Unidos/epidemiologia , População Urbana/estatística & dados numéricos , Radioterapia/economia , Radioterapia/normas , Radioterapia/estatística & dados numéricos , Região de Recursos Limitados/estatística & dados numéricos , Fatores Raciais/estatística & dados numéricos , Pessoal de Saúde/estatística & dados numéricos , Acessibilidade aos Serviços de Saúde/estatística & dados numéricos , Necessidades e Demandas de Serviços de Saúde/estatística & dados numéricos , Neoplasias da Próstata/economia , Neoplasias da Próstata/epidemiologia , Neoplasias da Próstata/etnologia , Neoplasias da Próstata/radioterapia , Neoplasias da Mama/economia , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/etnologia , Neoplasias da Mama/radioterapia , Feminino , Bases de Dados Factuais/estatística & dados numéricos , Assistência Centrada no Paciente/estatística & dados numéricos , Disparidades em Assistência à Saúde/economia , Disparidades em Assistência à Saúde/etnologia , Disparidades em Assistência à Saúde/estatística & dados numéricos
4.
J Clin Oncol ; 41(6): 1307-1317, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36367998

RESUMO

PURPOSE: We sought to investigate whether enzalutamide (ENZA), without concurrent androgen deprivation therapy, increases freedom from prostate-specific antigen (PSA) progression (FFPP) when combined with salvage radiation therapy (SRT) in men with recurrent prostate cancer after radical prostatectomy (RP). PATIENTS AND METHODS: Men with biochemically recurrent prostate cancer after RP were enrolled into a randomized, double-blind, phase II, placebo-controlled, multicenter study of SRT plus ENZA or placebo (ClinicalTrials.gov identifier: NCT02203695). Random assignment (1:1) was stratified by center, surgical margin status (R0 v R1), PSA before salvage treatment (PSA ≥ 0.5 v < 0.5 ng/mL), and pathologic Gleason sum (7 v 8-10). Patients were assigned to receive either ENZA 160 mg once daily or matching placebo for 6 months. After 2 months of study drug therapy, external-beam radiation (66.6-70.2 Gy) was administered to the prostate bed (no pelvic nodes). The primary end point was FFPP in the intention-to-treat population. Secondary end points were time to local recurrence within the radiation field, metastasis-free survival, and safety as determined by frequency and severity of adverse events. RESULTS: Eighty-six (86) patients were randomly assigned, with a median follow-up of 34 (range, 0-52) months. Trial arms were well balanced. The median pre-SRT PSA was 0.3 (range, 0.06-4.6) ng/mL, 56 of 86 patients (65%) had extraprostatic disease (pT3), 39 of 86 (45%) had a Gleason sum of 8-10, and 43 of 86 (50%) had positive surgical margins (R1). FFPP was significantly improved with ENZA versus placebo (hazard ratio [HR], 0.42; 95% CI, 0.19 to 0.92; P = .031), and 2-year FFPP was 84% versus 66%, respectively. Subgroup analyses demonstrated differential benefit of ENZA in men with pT3 (HR, 0.22; 95% CI, 0.07 to 0.69) versus pT2 disease (HR, 1.54; 95% CI, 0.43 to 5.47; Pinteraction = .019) and R1 (HR, 0.14; 95% CI, 0.03 to 0.64) versus R0 disease (HR, 1.00; 95% CI, 0.36 to 2.76; Pinteraction = .023). There were insufficient secondary end point events for analysis. The most common adverse events were grade 1-2 fatigue (65% ENZA v 53% placebo) and urinary frequency (40% ENZA v 49% placebo). CONCLUSION: SRT plus ENZA monotherapy for 6 months in men with PSA-recurrent high-risk prostate cancer after RP is safe and delays PSA progression relative to SRT alone. The impact of ENZA on distant metastasis or survival is unknown at this time.


Assuntos
Antígeno Prostático Específico , Neoplasias da Próstata , Masculino , Humanos , Próstata/patologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/cirurgia , Antagonistas de Androgênios/efeitos adversos , Terapia de Salvação , Recidiva Local de Neoplasia/tratamento farmacológico , Prostatectomia
5.
Prostate ; 83(3): 286-303, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36373171

RESUMO

BACKGROUND: Evaluating the complex interplay of cell types in the tissue microenvironment is critical to understanding the origin and progression of diseases in the prostate and potential opportunities for intervention. Mouse models are an essential tool to investigate the molecular and cell-type-specific contributions of prostate disease at an organismal level. While there are well-documented differences in the extent, timing, and nature of disease development in various genetically engineered and exposure-based mouse models in different mouse strains and prostate lobes within each mouse strain, the underlying molecular phenotypic differences in cell types across mouse strains and prostate lobes are incompletely understood. METHODS: In this study, we used single-cell RNA-sequencing (scRNA-seq) methods to assess the single-cell transcriptomes of 6-month-old mouse prostates from two commonly used mouse strains, friend virus B/NIH jackson (FVB/NJ) (N = 2) and C57BL/6J (N = 3). For each mouse, the lobes of the prostate were dissected (anterior, dorsal, lateral, and ventral), and individual scRNA-seq libraries were generated. In situ and pathological analyses were used to explore the spatial and anatomical distributions of novel cell types and molecular markers defining these cell types. RESULTS: Data dimensionality reduction and clustering analysis of scRNA-seq data revealed that basal and luminal cells possessed strain-specific transcriptomic differences, with luminal cells also displaying marked lobe-specific differences. Gene set enrichment analysis comparing luminal cells by strain showed enrichment of proto-Oncogene targets in FVB/NJ mice. Additionally, three rare populations of epithelial cells clustered independently of strain and lobe: one population of luminal cells expressing Foxi1 and components of the vacuolar ATPase proton pump (Atp6v0d2 and Atp6v1g3), another population expressing Psca and other stem cell-associated genes (Ly6a/Sca-1, Tacstd2/Trop-2), and a neuroendocrine population expressing Chga, Chgb, and Syp. In contrast, stromal cell clusters, including fibroblasts, smooth muscle cells, endothelial cells, pericytes, and immune cell types, were conserved across strain and lobe, clustering largely by cell type and not by strain or lobe. One notable exception to this was the identification of two distinct fibroblast populations that we term subglandular fibroblasts and interstitial fibroblasts based on their strikingly distinct spatial distribution in the mouse prostate. CONCLUSIONS: Altogether, these data provide a practical reference of the transcriptional profiles of mouse prostate from two commonly used mouse strains and across all four prostate lobes.


Assuntos
Células Endoteliais , Próstata , Masculino , Animais , Camundongos , Próstata/patologia , Camundongos Endogâmicos C57BL , Células Epiteliais , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/metabolismo
6.
Int J Radiat Oncol Biol Phys ; 115(3): 645-653, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36179990

RESUMO

PURPOSE: Very-high-risk (VHR) prostate cancer (PC) is an aggressive subgroup with high risk of distant disease progression. Systemic treatment intensification with abiraterone or docetaxel reduces PC-specific mortality (PCSM) and distant metastasis (DM) in men receiving external beam radiation therapy (EBRT) with androgen deprivation therapy (ADT). Whether prostate-directed treatment intensification with the addition of brachytherapy (BT) boost to EBRT with ADT improves outcomes in this group is unclear. METHODS AND MATERIALS: This cohort study from 16 centers across 4 countries included men with VHR PC treated with either dose-escalated EBRT with ≥24 months of ADT or EBRT + BT boost with ≥12 months of ADT. VHR was defined by National Comprehensive Cancer Network (NCCN) criteria (clinical T3b-4, primary Gleason pattern 5, or ≥2 NCCN high-risk features), and results were corroborated in a subgroup of men who met Systemic Therapy in Advancing or Metastatic Prostate Cancer: Evaluation of Drug Efficacy (STAMPEDE) trials inclusion criteria (≥2 of the following: clinical T3-4, Gleason 8-10, or PSA ≥40 ng/mL). PCSM and DM between EBRT and EBRT + BT were compared using inverse probability of treatment weight-adjusted Fine-Gray competing risk regression. RESULTS: Among the entire cohort, 270 underwent EBRT and 101 EBRT + BT. After a median follow-up of 7.8 years, 6.7% and 5.9% of men died of PC and 16.3% and 9.9% had DM after EBRT and EBRT + BT, respectively. There was no significant difference in PCSM (sHR, 1.47 [95% CI, 0.57-3.75]; P = .42) or DM (sHR, 0.72, [95% CI, 0.30-1.71]; P = .45) between EBRT + BT and EBRT. Results were similar within the STAMPEDE-defined VHR subgroup (PCSM: sHR, 1.67 [95% CI, 0.48-5.81]; P = .42; DM: sHR, 0.56 [95% CI, 0.15-2.04]; P = .38). CONCLUSIONS: In this VHR PC cohort, no difference in clinically meaningful outcomes was observed between EBRT alone with ≥24 months of ADT compared with EBRT + BT with ≥12 months of ADT. Comparative analyses in men treated with intensified systemic therapy are warranted.


Assuntos
Braquiterapia , Neoplasias da Próstata , Masculino , Humanos , Braquiterapia/métodos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/patologia , Estudos de Coortes , Antagonistas de Androgênios/uso terapêutico , Gradação de Tumores , Estudos Retrospectivos
7.
JCO Clin Cancer Inform ; 6: e2200082, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36306499

RESUMO

PURPOSE: The Bone Metastases Ensemble Trees for Survival Decision Support Platform (BMETS-DSP) provides patient-specific survival predictions and evidence-based recommendations to guide multidisciplinary management for symptomatic bone metastases. We assessed the clinical utility of the BMETS-DSP through a pilot prepost design in a simulated clinical environment. METHODS: Ten Radiation Oncology physicians reviewed 55 patient cases at two time points: without and then with the use of BMETS-DSP. Assessment included 12-month survival estimate, confidence in and likelihood of sharing estimates with patients, and recommendations for open surgery, systemic therapy, hospice referral, and radiotherapy (RT) regimen. Paired statistics compared pre- versus post-DSP outcomes. Reported statistical significance is P < .05. RESULTS: Pre- versus post-DSP, overestimation of true minus estimated survival time was significantly reduced (mean difference -2.1 [standard deviation 4.1] v -1 month [standard deviation 3.5]). Prediction accuracy was significantly improved at cut points of < 3 (72 v 79%), ≤ 6 (64 v 71%), and ≥ 12 months (70 v 81%). Median ratings of confidence in and likelihood of sharing prognosis significantly increased. Significantly greater concordance was seen in matching use of 1-fraction RT with the true survival < 3 months (70 v 76%) and < 10-fraction RT with the true survival < 12 months (55 v 62%) and appropriate use of open surgery (47% v 53%), without significant changes in selection of hospice referral or systemic therapy. CONCLUSION: This pilot study demonstrates that BMETS-DSP significantly improved physician survival estimation accuracy, prognostic confidence, likelihood of sharing prognosis, and use of prognosis-appropriate RT regimens in the care of symptomatic bone metastases, supporting future multi-institutional validation of the platform.


Assuntos
Neoplasias Ósseas , Radioterapia (Especialidade) , Humanos , Projetos Piloto , Neoplasias Ósseas/terapia , Neoplasias Ósseas/radioterapia , Prognóstico
9.
JAMA Oncol ; 8(3): e216871, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35050303

RESUMO

IMPORTANCE: Radiotherapy combined with androgen deprivation therapy (ADT) is a standard of care for high-risk prostate cancer. However, the interplay between radiotherapy dose and the required minimum duration of ADT is uncertain. OBJECTIVE: To determine the specific ADT duration threshold that provides a distant metastasis-free survival (DMFS) benefit in patients with high-risk prostate cancer receiving external beam radiotherapy (EBRT) or EBRT with a brachytherapy boost (EBRT+BT). DESIGN, SETTINGS, AND PARTICIPANTS: This was a cohort study of 3 cohorts assembled from a multicenter retrospective study (2000-2013); a post hoc analysis of the Randomized Androgen Deprivation and Radiotherapy 03/04 (RADAR; 2003-2007) randomized clinical trial (RCT); and a cross-trial comparison of the RADAR vs the Deprivación Androgénica y Radio Terapía (Androgen Deprivation and Radiation Therapy; DART) 01/05 RCT (2005-2010). In all, the study analyzed 1827 patients treated with EBRT and 1108 patients treated with EBRT+BT from the retrospective cohort; 181 treated with EBRT and 203 with EBRT+BT from RADAR; and 91 patients treated with EBRT from DART. The study was conducted from October 15, 2020, to July 1, 2021, and the data analyses, from January 5 to June 15, 2021. EXPOSURES: High-dose EBRT or EBRT+BT for an ADT duration determined by patient-physician choice (retrospective) or by randomization (RCTs). MAIN OUTCOMES AND MEASURES: The primary outcome was DMFS; secondary outcome was overall survival (OS). Natural cubic spline analysis identified minimum thresholds (months). RESULTS: This cohort study of 3 studies totaling 3410 men (mean age [SD], 68 [62-74] years; race and ethnicity not collected) with high-risk prostate cancer found a significant interaction between the treatment type (EBRT vs EBRT+BT) and ADT duration (binned to <6, 6 to <18, and ≥18 months). Natural cubic spline analysis identified minimum duration thresholds of 26.3 months (95% CI, 25.4-36.0 months) for EBRT and 12 months (95% CI, 4.9-36.0 months) for EBRT+BT for optimal effect on DMFS. In RADAR, the prolongation of ADT for patients receiving only EBRT was not associated with significant improvements in DMFS (hazard ratio [HR], 1.01; 95% CI, 0.65-1.57); however, for patients receiving EBRT+BT, a longer duration was associated with improved DMFS (DMFS HR, 0.56; 95% CI, 0.36-0.87; P = .01). For patients receiving EBRT alone (DART), 28 months of ADT was associated with improved DMFS compared with 18 months (RADAR HR, 0.37; 95% CI, 0.17-0.80; P = .01). CONCLUSIONS AND RELEVANCE: These cohort study findings suggest that the optimal minimum ADT duration for treatment with high-dose EBRT alone is more than 18 months; and for EBRT+BT, it is 18 months or possibly less. Additional studies are needed to determine more precise minimum durations.


Assuntos
Braquiterapia , Neoplasias da Próstata , Antagonistas de Androgênios/efeitos adversos , Androgênios , Braquiterapia/efeitos adversos , Análise de Dados , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/radioterapia , Estudos Retrospectivos
10.
Prostate ; 82(5): 551-555, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35014708

RESUMO

PURPOSE: A subset of patients with high-risk pathological features at radical prostatectomy recur with oligometastatic disease. The aim of this study is to investigate the rate of prostate bed recurrence, with or without history of prostate bed irradiation (PBRT), in oligometastatic prostate cancer (OMPC) patients after metastasis-directed therapy (MDT). METHODS: We performed a retrospective analysis of hormone-sensitive OMPC patients treated initially with curative-intent radical prostatectomy followed by disease recurrence and metastasis-directed stereotactic ablative radiotherapy (SABR) at our institution. Prostate bed recurrence rates were compared between patients who had PBRT at any point (i.e., before oligometastatic diagnosis or concurrently with MDT) versus those with no history of PBRT. RESULTS: Seventy-seven patients were included, and 68.8% had received PBRT. There were no significant differences in baseline characteristics between those who had received and had not received PBRT. There were five prostate bed recurrences following MDT, specifically with a 24-month cumulative incidence of 30.4% in patients who did not have PBRT and 2.4% in those who did (p = 0.03). Three of the five recurrences were isolated to the prostate bed at time of recurrence. CONCLUSIONS: Relapsed oligometastatic prostate cancer patients who have not received maximal local consolidative therapy to the prostate bed may have higher rates of local failure. Prospective studies are warranted investigating when prostate bed irradiation should be considered for patients after radical prostatectomy who ultimately have oligometastatic prostate cancer.


Assuntos
Próstata , Neoplasias da Próstata , Humanos , Masculino , Recidiva Local de Neoplasia/patologia , Próstata/patologia , Próstata/cirurgia , Prostatectomia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Estudos Retrospectivos
11.
J Eval Clin Pract ; 28(4): 581-598, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35090073

RESUMO

RATIONALE, AIMS AND OBJECTIVES: In the management of symptomatic bone metastases, current practice guidelines do not provide clear methodology for selecting palliative radiotherapy (RT) regimens based on specific patient and disease features. Decision support aids may offer an effective means for translating the complex data needed to render individualised treatment decisions, yet no such tools are available for use in this setting. Thus, we describe the development of the Bone Metastases Ensemble Trees for Survival-Decision Support Platform (BMETS-DSP), which aims to optimise selection of evidence-based, individualised palliative RT regimens. METHOD: The Ottawa Decision Support Framework was used as the theoretical basis for development of BMETS-DSP. First, we utilised stakeholder input and review of the literature to assess determinants underlying the provider decision. Based on this assessment and iterative stakeholder feedback, we developed the web-based, provider-facing BMETS-DSP. Consistent with the underlying theoretical framework, our design also included assessment of decision quality using the International Patient Decision Aids Standards (IPDAS) certification checklist. RESULTS: Stakeholder input and review of 54 evidence-based publications identified the following determinants of the provider decision: estimated prognosis, characteristics of the target symptomatic lesion and the primary cancer type, consideration of alternative interventions, access to patient-specific recommendations, and patient preferences. Based on these determinants, we developed the BMETS-DSP that (1) collects patient-specific data, (2) displays an individualised predicted survival curve, and (3) provides case-specific, evidence-based recommendations regarding RT, open surgery, systemic therapy, and hospice referral to aid in the decision-making process. The finalised tool met IPDAS quality requirements. Preliminary results of a pilot assessment suggest impact of clinical outcomes. CONCLUSIONS: We describe the successful development of a provider-facing decision support platform to aid in the provision of palliative RT in better alignment with patient and disease features. Impact of the BMETS-DSP on decision outcomes will be further assessed in a randomised, controlled study.


Assuntos
Técnicas de Apoio para a Decisão , Projetos de Pesquisa , Humanos , Prognóstico
12.
Semin Radiat Oncol ; 32(1): 76-81, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34861998

RESUMO

Androgen receptor signaling blockade is perhaps the first example of targeted therapy in the treatment of cancer. Since the initial observations that prostate cancers depend on hormone signaling, hormonal therapies remain a cornerstone in the treatment of metastatic prostate cancer. Androgen deprivation therapy has been shown to improve outcomes involving treatment of prostate cancers with radiotherapy, though a mechanistic understanding into the optimal sequencing of androgen deprivation therapy and radiotherapy remains incomplete. In this review we highlight key clinical trials designed to study combinations of hormonal and radiotherapies and introduce recent discoveries into the complex biology of androgen receptor signaling and DNA damage and repair. These emerging mechanistic and translational studies may have profound implications on both our understanding of hormonal therapy and radiotherapy combinations and the development of novel treatment strategies for locally-advanced and metastatic castrate resistant prostate cancer.


Assuntos
Antagonistas de Androgênios , Antagonistas de Receptores de Andrógenos , Neoplasias da Próstata , Antagonistas de Androgênios/uso terapêutico , Antagonistas de Receptores de Andrógenos/uso terapêutico , Antineoplásicos Hormonais/uso terapêutico , Humanos , Masculino , Neoplasias da Próstata/patologia , Neoplasias da Próstata/radioterapia
13.
JAMA Netw Open ; 4(12): e2138550, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34902034

RESUMO

Importance: Prostate-specific membrane antigen (PSMA) positron emission tomography/computed tomography (PET/CT) can detect low-volume, nonlocalized (ie, regional or metastatic) prostate cancer that was occult on conventional imaging. However, the long-term clinical implications of PSMA PET/CT upstaging remain unclear. Objectives: To evaluate the prognostic significance of a nomogram that models an individual's risk of nonlocalized upstaging on PSMA PET/CT and to compare its performance with existing risk-stratification tools. Design, Setting, and Participants: This cohort study included patients diagnosed with high-risk or very high-risk prostate cancer (ie, prostate-specific antigen [PSA] level >20 ng/mL, Gleason score 8-10, and/or clinical stage T3-T4, without evidence of nodal or metastatic disease by conventional workup) from April 1995 to August 2018. This multinational study was conducted at 15 centers. Data were analyzed from December 2020 to March 2021. Exposures: Curative-intent radical prostatectomy (RP), external beam radiotherapy (EBRT), or EBRT plus brachytherapy (BT), with or without androgen deprivation therapy. Main Outcomes and Measures: PSMA upstage probability was calculated from a nomogram using the biopsy Gleason score, percentage positive systematic biopsy cores, clinical T category, and PSA level. Biochemical recurrence (BCR), distant metastasis (DM), prostate cancer-specific mortality (PCSM), and overall survival (OS) were analyzed using Fine-Gray and Cox regressions. Model performance was quantified with the concordance (C) index. Results: Of 5275 patients, the median (IQR) age was 66 (60-72) years; 2883 (55%) were treated with RP, 1669 (32%) with EBRT, and 723 (14%) with EBRT plus BT; median (IQR) PSA level was 10.5 (5.9-23.2) ng/mL; 3987 (76%) had Gleason grade 8 to 10 disease; and 750 (14%) had stage T3 to T4 disease. Median (IQR) follow-up was 5.1 (3.1-7.9) years; 1221 (23%) were followed up for at least 8 years. Overall, 1895 (36%) had BCR, 851 (16%) developed DM, and 242 (5%) died of prostate cancer. PSMA upstage probability was significantly prognostic of all clinical end points, with 8-year C indices of 0.63 (95% CI, 0.61-0.65) for BCR, 0.69 (95% CI, 0.66-0.71) for DM, 0.71 (95% CI, 0.67-0.75) for PCSM, and 0.60 (95% CI, 0.57-0.62) for PCSM (P < .001). The PSMA nomogram outperformed existing risk-stratification tools, except for similar performance to Staging Collaboration for Cancer of the Prostate (STAR-CAP) for PCSM (eg, DM: PSMA, 0.69 [95% CI, 0.66-0.71] vs STAR-CAP, 0.65 [95% CI, 0.62-0.68]; P < .001; Memorial Sloan Kettering Cancer Center nomogram, 0.57 [95% CI, 0.54-0.60]; P < .001; Cancer of the Prostate Risk Assessment groups, 0.53 [95% CI, 0.51-0.56]; P < .001). Results were validated in secondary cohorts from the Surveillance, Epidemiology, and End Results database and the National Cancer Database. Conclusions and Relevance: These findings suggest that PSMA upstage probability is associated with long-term, clinically meaningful end points. Furthermore, PSMA upstaging had superior risk discrimination compared with existing tools. Formerly occult, PSMA PET/CT-detectable nonlocalized disease may be the main driver of outcomes in high-risk patients.


Assuntos
Antígenos de Superfície/metabolismo , Biomarcadores Tumorais/metabolismo , Regras de Decisão Clínica , Glutamato Carboxipeptidase II/metabolismo , Nomogramas , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Próstata/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/mortalidade , Neoplasias da Próstata/terapia , Estudos Retrospectivos , Medição de Risco , Programa de SEER , Análise de Sobrevida
15.
ACS Chem Biol ; 16(8): 1339-1343, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34240844

RESUMO

People whose cells express mutated forms of the BRCA1 tumor suppressor are at a higher risk for developing cancer. BRCA1-deficient cells are defective in DNA double-strand break repair. The inhibition of poly(ADP-ribose) polymerase 1 in such cells is a synthetically lethal, cytotoxic effect that has been exploited to produce anticancer drugs such as Olaparib. However, alternative synthetic lethal approaches are necessary. We report that DNA polymerase ß (Pol ß) forms a synthetically lethal interaction with BRCA1. The SiRNA knockdown of Pol ß or the treatment with a Pol ß pro-inhibitor (pro-1) is cytotoxic in BRCA1-deficient ovarian cancer cells. BRCA1-complemented cells are significantly less susceptible to either treatment. pro-1 is also toxic to BRCA1-deficient breast cancer cells, and its toxicity in BRCA1-deficient cells is comparable to that of Olaparib. These experiments establish Pol ß as a synthetically lethal target within BRCA1-deficient cells and a potentially useful one for treating cancer.


Assuntos
Antineoplásicos/farmacologia , Proteína BRCA1/deficiência , DNA Polimerase beta/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , DNA Polimerase beta/genética , Técnicas de Silenciamento de Genes , Inativação Gênica/efeitos dos fármacos , Humanos , Camundongos , Ftalazinas/farmacologia , Piperazinas/farmacologia , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , RNA Interferente Pequeno/farmacologia , Nucleotídeos de Timina/farmacologia
16.
JAMA Netw Open ; 4(7): e2115312, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34196715

RESUMO

Importance: The optimal management strategy for high-risk prostate cancer and additional adverse clinicopathologic features remains unknown. Objective: To compare clinical outcomes among patients with high-risk prostate cancer after definitive treatment. Design, Setting, and Participants: This retrospective cohort study included patients with high-risk prostate cancer (as defined by the National Comprehensive Cancer Network [NCCN]) and at least 1 adverse clinicopathologic feature (defined as any primary Gleason pattern 5 on biopsy, clinical T3b-4 disease, ≥50% cores with biopsy results positive for prostate cancer, or NCCN ≥2 high-risk features) treated between 2000 and 2014 at 16 tertiary centers. Data were analyzed in November 2020. Exposures: Radical prostatectomy (RP), external beam radiotherapy (EBRT) with androgen deprivation therapy (ADT), or EBRT plus brachytherapy boost (BT) with ADT. Guideline-concordant multimodal treatment was defined as RP with appropriate use of multimodal therapy (optimal RP), EBRT with at least 2 years of ADT (optimal EBRT), or EBRT with BT with at least 1 year ADT (optimal EBRT with BT). Main Outcomes and Measures: The primary outcome was prostate cancer-specific mortality; distant metastasis was a secondary outcome. Differences were evaluated using inverse probability of treatment weight-adjusted Fine-Gray competing risk regression models. Results: A total of 6004 men (median [interquartile range] age, 66.4 [60.9-71.8] years) with high-risk prostate cancer were analyzed, including 3175 patients (52.9%) who underwent RP, 1830 patients (30.5%) who underwent EBRT alone, and 999 patients (16.6%) who underwent EBRT with BT. Compared with RP, treatment with EBRT with BT (subdistribution hazard ratio [sHR] 0.78, [95% CI, 0.63-0.97]; P = .03) or with EBRT alone (sHR, 0.70 [95% CI, 0.53-0.92]; P = .01) was associated with significantly improved prostate cancer-specific mortality; there was no difference in prostate cancer-specific mortality between EBRT with BT and EBRT alone (sHR, 0.89 [95% CI, 0.67-1.18]; P = .43). No significant differences in prostate cancer-specific mortality were found across treatment cohorts among 2940 patients who received guideline-concordant multimodality treatment (eg, optimal EBRT alone vs optimal RP: sHR, 0.76 [95% CI, 0.52-1.09]; P = .14). However, treatment with EBRT alone or EBRT with BT was consistently associated with lower rates of distant metastasis compared with treatment with RP (eg, EBRT vs RP: sHR, 0.50 [95% CI, 0.44-0.58]; P < .001). Conclusions and Relevance: These findings suggest that among patients with high-risk prostate cancer and additional unfavorable clinicopathologic features receiving guideline-concordant multimodal therapy, prostate cancer-specific mortality outcomes were equivalent among those treated with RP, EBRT, and EBRT with BT, although distant metastasis outcomes were more favorable among patients treated with EBRT and EBRT with BT. Optimal multimodality treatment is critical for improving outcomes in patients with high-risk prostate cancer.


Assuntos
Terapia Combinada/normas , Neoplasias da Próstata/terapia , Radioterapia/normas , Idoso , California/epidemiologia , Estudos de Coortes , Terapia Combinada/estatística & dados numéricos , Humanos , Masculino , Pessoa de Meia-Idade , Prostatectomia/métodos , Prostatectomia/estatística & dados numéricos , Neoplasias da Próstata/complicações , Neoplasias da Próstata/mortalidade , Radioterapia/métodos , Radioterapia/estatística & dados numéricos , Estudos Retrospectivos , Fatores de Risco , Resultado do Tratamento
17.
Eur Urol ; 80(2): 142-146, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33985797

RESUMO

The natural history of radiorecurrent high-risk prostate cancer (HRPCa) is not well-described. To better understand its clinical course, we evaluated rates of distant metastases (DM) and prostate cancer-specific mortality (PCSM) in a cohort of 978 men with radiorecurrent HRPCa who previously received either external beam radiation therapy (EBRT, n = 654, 67%) or EBRT + brachytherapy (EBRT + BT, n = 324, 33%) across 15 institutions from 1997 to 2015. In men who did not die, median follow-up after treatment was 8.9 yr and median follow-up after biochemical recurrence (BCR) was 3.7 yr. Local and systemic therapy salvage, respectively, were delivered to 21 and 390 men after EBRT, and eight and 103 men after EBRT + BT. Overall, 435 men developed DM, and 248 were detected within 1 yr of BCR. Measured from time of recurrence, 5-yr DM rates were 50% and 34% after EBRT and EBRT + BT, respectively. Measured from BCR, 5-yr PCSM rates were 27% and 29%, respectively. Interval to BCR was independently associated with DM (p < 0.001) and PCSM (p < 0.001). These data suggest that radiorecurrent HRPCa has an aggressive natural history and that DM is clinically evident early after BCR. These findings underscore the importance of further investigations into upfront risk assessment and prompt systemic evaluation upon recurrence in HRPCa. PATIENT SUMMARY: High-risk prostate cancer that recurs after radiation therapy is an aggressive disease entity and spreads to other parts of the body (metastases). Some 60% of metastases occur within 1 yr. Approximately 30% of these patients die from their prostate cancer.


Assuntos
Braquiterapia , Neoplasias da Próstata , Braquiterapia/efeitos adversos , Humanos , Masculino , Gradação de Tumores , Próstata , Neoplasias da Próstata/radioterapia , Terapia de Salvação
18.
Prostate ; 81(11): 745-753, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34032307

RESUMO

BACKGROUND: Current preclinical models of metastatic prostate cancer (PCa) require sophisticated technologies and/or genetically engineered cells for the noninvasive monitoring of tumors in remote sites, such as bone. Recent developments in circulating tumor DNA (ctDNA) analysis provide an alternative method for noninvasive tumor monitoring at a low cost. Here, we sought to evaluate human Alu and LINE-1 ctDNA for the longitudinal measurement of subcutaneous and intratibial human PCa xenograft growth and response to ionizing radiation (IR) through comparison with standard slide caliper and bioluminescence measurements. MATERIAL AND METHODS: Intratibial and subcutaneous xenografts were established in male athymic nude mice using LNCaP cells that stably express firefly luciferase. A subset of tumors was treated with a single dose of IR (CT-guided focal IR, 6 Gy). Tumor measurements were simultaneously taken by slide caliper (subcutaneous only), in vivo bioluminescence imaging, and quantitative real-time PCR (qPCR) of human-specific Alu and LINE-1 ctDNA for several weeks. RESULTS: Levels of ctDNA and bioluminescence increased concordantly with subcutaneous and intratibial tumor growth. A statistically significant correlation (Spearman) was observed between ctDNA and subcutaneous tumor volume (LINE-1, r = .94 and Alu, r = .95, p < .0001), ctDNA and bioluminescence (LINE-1, r = .66 and Alu, r = .60, p < .002), and bioluminescence and tumor volume (r = .66, p = .0003). Bioluminescence and ctDNA were also significantly correlated in intratibial tumors (LINE-1, r = .82 and Alu, r = .81, p < .0001). Following external beam IR, the tumor responses varied briefly by method of measurement, but followed a similar trend. Statistically significant correlations were maintained between ctDNA and slide caliper measurement in irradiated subcutaneous tumors (LINE-1, r = .64 and Alu, r = .44, p < .02), and ctDNA and bioluminescence in intratibial tumors (LINE-1, r = .55, p = .018). CONCLUSIONS: Real-time qPCR of circulating human Alu and LINE-1 DNA provides an accurate measurement of subcutaneous and intratibial xenograft burden that is comparable with conventional bioluminescence imaging and slide caliper measurement. Transient differences in measurements were observed following tumor-targeted IR, but overall all measurements mirrored tumor growth and response.


Assuntos
Elementos Alu/genética , DNA Tumoral Circulante/sangue , Elementos Nucleotídeos Longos e Dispersos/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/radioterapia , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Humanos , Medições Luminescentes/métodos , Masculino , Camundongos , Camundongos Nus , Gordura Subcutânea/patologia , Tíbia/patologia , Carga Tumoral
20.
JCO Clin Cancer Inform ; 5: 304-314, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33760638

RESUMO

PURPOSE: The Bone Metastases Ensemble Trees for Survival (BMETS) model uses a machine learning algorithm to estimate survival time following consultation for palliative radiation therapy for symptomatic bone metastases (SBM). BMETS was developed at a tertiary-care, academic medical center, but its validity and stability when applied to external data sets are unknown. PATIENTS AND METHODS: Patients treated with palliative radiation therapy for SBM from May 2013 to May 2016 at two hospital-based community radiation oncology clinics were included, and medical records were retrospectively reviewed to collect model covariates and survival time. The Kaplan-Meier method was used to estimate overall survival from consultation to death or last follow-up. Model discrimination was estimated using time-dependent area under the curve (tAUC), which was calculated using survival predictions from BMETS based on the initial training data set. RESULTS: A total of 216 sites of SBM were treated in 182 patients. Most common histologies were breast (27%), lung (23%), and prostate (23%). Compared with the BMETS training set, the external validation population was older (mean age, 67 v 62 years; P < .001), had more primary breast (27% v 19%; P = .03) and prostate cancer (20% v 12%; P = .01), and survived longer (median, 10.7 v 6.4 months). When the BMETS model was applied to the external data set, tAUC values at 3, 6, and 12 months were 0.82, 0.77, and 0.77, respectively. When refit with data from the combined training and external validation sets, tAUC remained > 0.79. CONCLUSION: BMETS maintained high discriminative ability when applied to an external validation set and when refit with new data, supporting its generalizability, stability, and the feasibility of dynamic modeling.


Assuntos
Neoplasias Ósseas , Aprendizado de Máquina , Idoso , Neoplasias Ósseas/mortalidade , Humanos , Cuidados Paliativos , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...