Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 3136, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672288

RESUMO

Boron nitride nanotubes (BNNTs) have attracted attention for their predicted extraordinary properties; yet, challenges in synthesis and processing have stifled progress on macroscopic materials. Recent advances have led to the production of highly pure BNNTs. Here we report that neat BNNTs dissolve in chlorosulfonic acid (CSA) and form birefringent liquid crystal domains at concentrations above 170 ppmw. These tactoidal domains merge into millimeter-sized regions upon light sonication in capillaries. Cryogenic electron microscopy directly shows nematic alignment of BNNTs in solution. BNNT liquid crystals can be processed into aligned films and extruded into neat BNNT fibers. This study of nematic liquid crystals of BNNTs demonstrates their ability to form macroscopic materials to be used in high-performance applications.

2.
Nanoscale ; 14(26): 9313-9322, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35579037

RESUMO

Covalent modification of the surface of carbon nanotube fibres (CNTFs) through electrochemical reduction of para-substituted phenyldiazonium salts and electrochemical oxidation of an aliphatic diamine is described. Following these strategies, diverse surface functionalities have been introduced while preserving the fibre bulk properties. The corresponding modified CNTFs were fully characterised by Raman spectroscopy, X-ray photoelectron spectroscopy, energy dispersive X-Ray, scanning electron microscopy and electrochemical impedance spectroscopy, exhibiting different surface properties from those of the unmodified CNTFs.

3.
Sci Adv ; 8(17): eabm3285, 2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35476431

RESUMO

Chlorosulfonic acid and oleum are ideal solvents for enabling the transformation of disordered carbon nanotubes (CNTs) into precise and highly functional morphologies. Currently, processing these solvents using extrusion techniques presents complications due to chemical compatibility, which constrain equipment and substrate material options. Here, we present a novel acid solvent system based on methanesulfonic or p-toluenesulfonic acids with low corrosivity, which form true solutions of CNTs at concentrations as high as 10 g/liter (≈0.7 volume %). The versatility of this solvent system is demonstrated by drop-in application to conventional manufacturing processes such as slot die coating, solution spinning continuous fibers, and 3D printing aerogels. Through continuous slot coating, we achieve state-of-the-art optoelectronic performance (83.6 %T and 14 ohm/sq) at industrially relevant production speeds. This work establishes practical and efficient means for scalable processing of CNT into advanced materials with properties suitable for a wide range of applications.

4.
Nat Commun ; 12(1): 4931, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34389723

RESUMO

Low-dimensional materials have recently attracted much interest as thermoelectric materials because of their charge carrier confinement leading to thermoelectric performance enhancement. Carbon nanotubes are promising candidates because of their one-dimensionality in addition to their unique advantages such as flexibility and light weight. However, preserving the large power factor of individual carbon nanotubes in macroscopic assemblies has been challenging, primarily due to poor sample morphology and a lack of proper Fermi energy tuning. Here, we report an ultrahigh value of power factor (14 ± 5 mW m-1 K-2) for macroscopic weavable fibers of aligned carbon nanotubes with ultrahigh electrical and thermal conductivity. The observed giant power factor originates from the ultrahigh electrical conductivity achieved through excellent sample morphology, combined with an enhanced Seebeck coefficient through Fermi energy tuning. We fabricate a textile thermoelectric generator based on these carbon nanotube fibers, which demonstrates high thermoelectric performance, weavability, and scalability. The giant power factor we observe make these fibers strong candidates for the emerging field of thermoelectric active cooling, which requires a large thermoelectric power factor and a large thermal conductivity at the same time.

5.
Nano Lett ; 21(17): 7093-7099, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34459618

RESUMO

Smart wearable electronic accessories (e.g., watches) have found wide adoption; conversely, progress in electronic textiles has been slow due to the difficulty of embedding rigid electronic materials into flexible fabrics. Electronic clothing requires fibers that are conductive, robust, biocompatible, and can be produced on a large scale. Here, we create sewable electrodes and signal transmission wires from neat carbon nanotube threads (CNTT). These threads are soft like standard sewing thread, but they have metal-level conductivity and low interfacial impedance with skin. Electrocardiograms (EKGs) obtained by CNTT electrodes were comparable (P > 0.05) to signals obtained with commercial electrodes. CNTT can also be used as transmission wires to carry signals to other parts of a garment. Finally, the textiles can be machine-washed and stretched repeatedly without signal degradation. These results demonstrate promise for textile sensors and electronic fabric with the feel of standard clothing that can be incorporated with traditional clothing manufacturing techniques.


Assuntos
Dispositivos Eletrônicos Vestíveis , Vestuário , Eletrodos , Eletrônica , Têxteis
6.
Nano Lett ; 20(5): 3178-3184, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32353239

RESUMO

Active fibers with electro-optic functionalities are promising building blocks for the emerging and rapidly growing field of fiber and textile electronics. Yet, there remains significant challenges that require improved understanding of the principles of active fiber assembly to enable the development of fiber-shaped devices characterized by having a small diameter, being lightweight, and having high mechanical strength. To this end, the current frameworks are insufficient, and new designs and fabrication approaches are essential to accommodate this unconventional form factor. Here, we present a first demonstration of a pathway that effectively integrates the foundational components meeting such requirements, with the use of a flexible and robust conductive core carbon nanotube fiber and an organic-inorganic emissive composite layer as the two critical elements. We introduce an active fiber design that can be realized through an all solution-processed approach. We have implemented this technique to demonstrate a three-layered light-emitting fiber with a coaxially coated design.

7.
Nanoscale ; 10(31): 14938-14946, 2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-30046774

RESUMO

The electrical behaviors under mechanical deformation of an aligned single-walled carbon nanotube (SWCNT) film nanocomposite have been systematically investigated in this work. Electrical signals along the CNT axis (‖) and perpendicular to the CNT axis (⊥) follow a specific pattern, which enables the mechanical motion to be determined by vector analysis of such signals. The unique electrical behaviors of the sandwiched nanocomposites originate from the anisotropic characteristics of the CNT films. By combining in situ mechanical investigation with a coarse-grained molecular dynamics simulation, the shearing effect between SWCNTs is found to play a key role in stress-transfer along the ‖ direction, resulting in arc-shape cracks, while the peeling effect is dominant along the ⊥ direction, leading to unifom SWCNT bar bridging at cracks. The fabricated CNT based sandwiched nanocomposite is believed to have great potential in building flexible all-direction sensors.

8.
ACS Appl Mater Interfaces ; 3(8): 3033-41, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21774486

RESUMO

Surface passivation of semiconductor nanocrystals (NCs) is critical in enabling their utilization in novel optoelectronic devices, solar cells, and biological and chemical sensors. Compared to the extensively used liquid-phase NC synthesis and passivation techniques, gas-phase routes provide the unique opportunity for in situ passivation of semiconductor NCs. Herein, we present a method for in situ gas-phase organic functionalization of plasma-synthesized, H-terminated silicon (Si) NCs. Using real-time in situ attenuated total reflection Fourier transform IR spectroscopy, we have studied the surface reactions during hydrosilylation of Si NCs at 160 °C. First, we show that, during gas-phase hydrosilylation of Si NCs using styrene (1-alkene) and acetylene (alkyne), the reaction pathways of the alkenes and alkynes chemisorbing onto surface SiH(x) (x = 1-3) species are different. Second, utilizing this difference in reactivity, we demonstrate a novel pathway to enhance the surface ligand passivation of Si NCs via in situ gas-phase hydrosilylation using the combination of a short-chain alkyne (acetylene) and a long-chain 1-alkene (styrene). The quality of surface passivation is further validated through IR and photoluminescence measurements of Si NCs exposed to air.


Assuntos
Gases/química , Nanopartículas/química , Silício/química , Acetileno/química , Alcenos/química , Oxirredução , Semicondutores , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...