Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS Lett ; 598(7): 758-773, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38436147

RESUMO

The human Mediator complex subunit MED25 binds transactivation domains (TADs) present in various cellular and viral proteins using two binding interfaces, named H1 and H2, which are found on opposite sides of its ACID domain. Here, we use and compare deep learning methods to characterize human MED25-TAD interfaces and assess the predicted models to published experimental data. For the H1 interface, AlphaFold produces predictions with high-reliability scores that agree well with experimental data, while the H2 interface predictions appear inconsistent, preventing reliable binding modes. Despite these limitations, we experimentally assess the validity of MED25 interface predictions with the viral transcriptional activators Lana-1 and IE62. AlphaFold predictions also suggest the existence of a unique hydrophobic pocket for the Arabidopsis MED25 ACID domain.


Assuntos
Proteínas Imediatamente Precoces , Complexo Mediador , Humanos , Complexo Mediador/genética , Complexo Mediador/metabolismo , Ativação Transcricional , Reprodutibilidade dos Testes , Fatores de Transcrição/metabolismo , Proteínas do Envelope Viral/metabolismo , Transativadores/metabolismo , Proteínas Imediatamente Precoces/metabolismo
2.
Angew Chem Int Ed Engl ; 60(48): 25428-25435, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34570415

RESUMO

The main protease (3CLp) of the SARS-CoV-2, the causative agent for the COVID-19 pandemic, is one of the main targets for drug development. To be active, 3CLp relies on a complex interplay between dimerization, active site flexibility, and allosteric regulation. The deciphering of these mechanisms is a crucial step to enable the search for inhibitors. In this context, using NMR spectroscopy, we studied the conformation of dimeric 3CLp from the SARS-CoV-2 and monitored ligand binding, based on NMR signal assignments. We performed a fragment-based screening that led to the identification of 38 fragment hits. Their binding sites showed three hotspots on 3CLp, two in the substrate binding pocket and one at the dimer interface. F01 is a non-covalent inhibitor of the 3CLp and has antiviral activity in SARS-CoV-2 infected cells. This study sheds light on the complex structure-function relationships of 3CLp and constitutes a strong basis to assist in developing potent 3CLp inhibitors.


Assuntos
Antivirais/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Cisteína Proteinase/farmacologia , SARS-CoV-2/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Antivirais/química , Sítios de Ligação , Chlorocebus aethiops , Proteases 3C de Coronavírus/química , Inibidores de Cisteína Proteinase/química , Avaliação Pré-Clínica de Medicamentos , Testes de Sensibilidade Microbiana , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Multimerização Proteica , SARS-CoV-2/química , Bibliotecas de Moléculas Pequenas/química , Células Vero
3.
Nat Commun ; 9(1): 3389, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30140054

RESUMO

The Mediator complex transduces regulatory information from enhancers to promoters and performs essential roles in the initiation of transcription in eukaryotes. Human Mediator comprises 26 subunits forming three modules termed Head, Middle and Tail. Here we present the 2.8 Å crystal structure of MED23, the largest subunit from the human Tail module. The structure identifies 25 HEAT repeats-like motifs organized into 5 α-solenoids. MED23 adopts an arch-shaped conformation, with an N-terminal domain (Nter) protruding from a large core region. In the core four solenoids, motifs wrap on themselves, creating triangular-shaped structural motifs on both faces of the arch, with extended grooves propagating through the interfaces between the solenoid motifs. MED23 is known to interact with several specific transcription activators and is involved in splicing, elongation, and post-transcriptional events. The structure rationalizes previous biochemical observations and paves the way for improved understanding of the cross-talk between Mediator and transcriptional activators.


Assuntos
Complexo Mediador/química , Subunidades Proteicas/química , Motivos de Aminoácidos , Cristalização , Cristalografia por Raios X , Humanos , Complexo Mediador/metabolismo , Domínios Proteicos , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/biossíntese , Anticorpos de Domínio Único/metabolismo
4.
J Mol Biol ; 429(20): 3043-3055, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-28893534

RESUMO

MED26 is a subunit of Mediator, a large complex central to the regulation of gene transcription by RNA Polymerase II. MED26 plays a role in the switch between the initiation and elongation phases of RNA Polymerase II-mediated transcription process. Regulation of these steps requires successive binding of MED26 N-terminal domain (NTD) to TATA-binding protein-associated factor 7 (TAF7) and Eleven-nineteen lysine-rich in leukemia-Associated Factor 1 (EAF1). In order to investigate the mechanism of regulation by MED26, MED26-NTD structure was solved by NMR, revealing a 4-helix bundle. EAF1 (239-268) and TAF7 (205-235) peptide interactions were both mapped to the same groove formed by H3 and H4 helices of MED26-NTD. Both interactions are characterized by dissociation constants in the 10-µM range. Further experiments revealed a folding-upon-binding mechanism that leads to the formation of EAF1 (N247-S260) and TAF7 (L214-S227) helices. Chemical shift perturbations and nuclear Overhauser enhancement contacts support the involvement of residues I222/F223 in anchoring TAF7 helix to a hydrophobic pocket of MED26-NTD, including residues L48, W80 and I84. In addition, Ala mutations of charged residues located in the C-terminal disordered part of TAF7 and EAF1 peptides affected the binding, with a loss of affinity characterized by a 10-time increase of dissociation constants. A structural model of MED26-NTD/TAF7 complex shows bi-partite components, combining ordered and disordered segments, as well as hydrophobic and electrostatic contributions to the binding. This study provides molecular detail that will help to decipher the mechanistic basis for the initiation to elongation switch-function mediated by MED26-NTD.


Assuntos
Complexo Mediador/química , Complexo Mediador/metabolismo , Fatores Associados à Proteína de Ligação a TATA/química , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/química , Fator de Transcrição TFIID/metabolismo , Fatores de Transcrição/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas
5.
Biomol NMR Assign ; 10(1): 233-6, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26861138

RESUMO

MED26 is a subunit of the Mediator, a very large complex involved in regulation of gene transcription by RNA Polymerase II. MED26 regulates the switch between initiation and elongation phases of the transcription. This function requires interaction of its N-terminal domain (NTD) with several protein partners implicated in transcriptional regulation. Molecular details of the structure and interaction mode of MED26 NTD would improve understanding of this complex regulation. As a first step towards structural characterization, sequence specific (1)H, (13)C and (15)N assignments for MED26 NTD was performed based on Nuclear Magnetic Resonance spectroscopy. TALOS+ analysis of the chemical shifts data revealed a domain solely composed of helices. Assignments will be further used to solve NMR structure and dynamics of MED26 NTD and investigate the molecular details of its interaction with protein partners.


Assuntos
Complexo Mediador/química , Ressonância Magnética Nuclear Biomolecular , Subunidades Proteicas/química , Sequência de Aminoácidos , Complexo Mediador/metabolismo , Domínios Proteicos , Estrutura Secundária de Proteína , Subunidades Proteicas/metabolismo
6.
J Biol Chem ; 291(2): 630-9, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26555268

RESUMO

FAT10 conjugation, a post-translational modification analogous to ubiquitination, specifically requires UBA6 and UBE2Z as its activating (E1) and conjugating (E2) enzymes. Interestingly, these enzymes can also function in ubiquitination. We have determined the crystal structure of UBE2Z and report how the different domains of this E2 enzyme are organized. We further combine our structural data with mutational analyses to understand how specificity is achieved in the FAT10 conjugation pathway. We show that specificity toward UBA6 and UBE2Z lies within the C-terminal CYCI tetrapeptide in FAT10. We also demonstrate that this motif slows down transfer rates for FAT10 from UBA6 onto UBE2Z.


Assuntos
Enzimas de Conjugação de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinas/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Cinética , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Peptídeos/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Especificidade por Substrato , Enzimas Ativadoras de Ubiquitina/metabolismo
7.
Nucleic Acids Res ; 43(14): 7110-21, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26130716

RESUMO

The N-terminal acidic transactivation domain (TAD) of ERM/ETV5 (ERM38-68), a PEA3 group member of Ets-related transcription factors, directly interacts with the ACID/PTOV domain of the Mediator complex subunit MED25. Molecular details of this interaction were investigated using nuclear magnetic resonance (NMR) spectroscopy. The TAD is disordered in solution but has a propensity to adopt local transient secondary structure. We show that it folds upon binding to MED25 and that the resulting ERM-MED25 complex displays characteristics of a fuzzy complex. Mutational analysis further reveals that two aromatic residues in the ERM TAD (F47 and W57) are involved in the binding to MED25 and participate in the ability of ERM TAD to activate transcription. Mutation of a key residue Q451 in the VP16 H1 binding pocket of MED25 affects the binding of ERM. Furthermore, competition experiments show that ERM and VP16 H1 share a common binding interface on MED25. NMR data confirms the occupancy of this binding pocket by ERM TAD. Based on these experimental data, a structural model of a functional interaction is proposed. This study provides mechanistic insights into the Mediator-transactivator interactions.


Assuntos
Proteínas de Ligação a DNA/química , Complexo Mediador/química , Transativadores/química , Fatores de Transcrição/química , Proteínas de Ligação a DNA/metabolismo , Complexo Mediador/genética , Complexo Mediador/metabolismo , Modelos Moleculares , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transativadores/metabolismo , Fatores de Transcrição/metabolismo
8.
Nat Commun ; 6: 7452, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26058369

RESUMO

Omp85 proteins mediate translocation of polypeptide substrates across and into cellular membranes. They share a common architecture comprising substrate-interacting POTRA domains, a C-terminal 16-stranded ß-barrel pore and two signature motifs located on the inner barrel wall and at the tip of the extended L6 loop. The observation of two distinct conformations of the L6 loop in the available Omp85 structures previously suggested a functional role of conformational changes in L6 in the Omp85 mechanism. Here we present a 2.5 Å resolution structure of a variant of the Omp85 secretion protein FhaC, in which the two signature motifs interact tightly and form the conserved 'lid lock'. Reanalysis of previous structural data shows that L6 adopts the same, conserved resting state position in all available Omp85 structures. The FhaC variant structure further reveals a competitive mechanism for the regulation of substrate binding mediated by the linker to the N-terminal plug helix H1.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas de Escherichia coli/química , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Difração de Raios X
9.
J Bacteriol ; 197(4): 688-98, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25404693

RESUMO

Many bacterial pathogens use type three secretion systems (T3SS) to inject virulence factors, named effectors, directly into the cytoplasm of target eukaryotic cells. Most of the T3SS components are conserved among plant and animal pathogens, suggesting a common mechanism of recognition and secretion of effectors. However, no common motif has yet been identified for effectors allowing T3SS recognition. In this work, we performed a biochemical and structural characterization of the Salmonella SopB/SigE chaperone/effector complex by small-angle X-ray scattering (SAXS). Our results showed that the SopB/SigE complex is assembled in dynamic homohexameric-ring-shaped structures with an internal tunnel. In this ring, the chaperone maintains a disordered N-terminal end of SopB molecules, in a good position to be reached and processed by the T3SS. This ring dimensionally fits the ring-organized molecules of the injectisome, including ATPase hexameric rings; this organization suggests that this structural feature is important for ATPase recognition by T3SS. Our work constitutes the first evidence of the oligomerization of an effector, analogous to the organization of the secretion machinery, obtained in solution. As effectors share neither sequence nor structural identity, the quaternary oligomeric structure could constitute a strategy evolved to promote the specificity and efficiency of T3SS recognition.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Salmonella typhimurium/metabolismo , Fator sigma/química , Fator sigma/metabolismo , Proteínas de Bactérias/genética , Sistemas de Secreção Bacterianos , Modelos Moleculares , Chaperonas Moleculares/genética , Estrutura Terciária de Proteína , Salmonella typhimurium/química , Salmonella typhimurium/enzimologia , Salmonella typhimurium/genética , Espalhamento a Baixo Ângulo , Fator sigma/genética
10.
Artigo em Inglês | MEDLINE | ID: mdl-24316822

RESUMO

Haemophilus influenzae HxuA is a cell-surface protein with haem-haemopexin binding activity which is key to haem acquisition from haemopexin and thus is one of the potential sources of haem for this microorganism. HxuA is secreted by its specific transporter HxuB. HxuA/HxuB belongs to the so-called two-partner secretion systems (TPSs) that are characterized by a conserved N-terminal domain in the secreted protein which is essential for secretion. Here, the 1.5 Šresolution structure of the secretion domain of HxuA, HxuA301, is reported. The structure reveals that HxuA301 folds into a ß-helix domain with two extra-helical motifs, a four-stranded ß-sheet and an N-terminal cap. Comparisons with other structures of TpsA secretion domains are reported. They reveal that despite limited sequence identity, strong structural similarities are found between the ß-helix motifs, consistent with the idea that the TPS domain plays a role not only in the interaction with the specific TpsB partners but also as the scaffold initiating progressive folding of the TpsA proteins at the bacterial surface.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas de Transporte/química , Haemophilus influenzae/química , Heme/química , Hemopexina/química , Modelos Moleculares , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Sistemas de Secreção Bacterianos/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Haemophilus influenzae/metabolismo , Heme/metabolismo , Hemopexina/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia Estrutural de Proteína
11.
Biochim Biophys Acta ; 1834(12): 2564-72, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24075929

RESUMO

The TTSS is used by Salmonella and many bacterial pathogens to inject virulence factors directly into the cytoplasm of target eukaryotic cells. Once translocated these so-called effector proteins hijack a vast array of crucial cellular functions to the benefit of the bacteria. In the bacterial cytoplasm, some effectors are stabilized and maintained in a secretion competent state by interaction with specific type III chaperones. In this work we studied the conformation of the Chaperone Binding Domain of the effector named Salmonella Outer protein B (SopB) alone and in complex with its cognate chaperone SigE by a combination of biochemical, biophysical and structural approaches. Our results show that the N-terminus part of SopB is mainly composed by α-helices and unfolded regions whose organization/stabilization depends on their interaction with the different partners. This suggests that the partially unfolded state of this N-terminal region, which confers the adaptability of the effector to bind very different partners during the infection cycle, allows the bacteria to modulate numerous host cells functions limiting the number of translocated effectors.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Chaperonas Moleculares/química , Salmonella typhimurium/química , Fator sigma/metabolismo , Proteínas de Bactérias/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Fator sigma/genética
12.
Mol Microbiol ; 90(1): 54-71, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23909720

RESUMO

Sinorhizobium meliloti is a soil bacterium that invades the root nodules it induces on Medicago sativa, whereupon it undergoes an alteration of its cell cycle and differentiates into nitrogen-fixing, elongated and polyploid bacteroid with higher membrane permeability. In Caulobacter crescentus, a related alphaproteobacterium, the principal cell cycle regulator, CtrA, is inhibited by the phosphorylated response regulator DivK. The phosphorylation of DivK depends on the histidine kinase DivJ, while PleC is the principal phosphatase for DivK. Despite the importance of the DivJ in C. crescentus, the mechanistic role of this kinase has never been elucidated in other Alphaproteobacteria. We show here that the histidine kinases DivJ together with CbrA and PleC participate in a complex phosphorylation system of the essential response regulator DivK in S. meliloti. In particular, DivJ and CbrA are involved in DivK phosphorylation and in turn CtrA inactivation, thereby controlling correct cell cycle progression and the integrity of the cell envelope. In contrast, the essential PleC presumably acts as a phosphatase of DivK. Interestingly, we found that a DivJ mutant is able to elicit nodules and enter plant cells, but fails to establish an effective symbiosis suggesting that proper envelope and/or low CtrA levels are required for symbiosis.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Processamento de Proteína Pós-Traducional , Sinorhizobium meliloti/fisiologia , Simbiose , Medicago sativa/microbiologia , Fosforilação , Sinorhizobium meliloti/genética
13.
Nucleic Acids Res ; 41(9): 4847-59, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23531547

RESUMO

PEA3, ERM and ER81 belong to the PEA3 subfamily of Ets transcription factors and play important roles in a number of tissue-specific processes. Transcriptional activation by PEA3 subfamily factors requires their characteristic amino-terminal acidic transactivation domain (TAD). However, the cellular targets of this domain remain largely unknown. Using ERM as a prototype, we show that the minimal N-terminal TAD activates transcription by contacting the activator interacting domain (ACID)/Prostate tumor overexpressed protein 1 (PTOV) domain of the Mediator complex subunit MED25. We further show that depletion of MED25 disrupts the association of ERM with the Mediator in vitro. Small interfering RNA-mediated knockdown of MED25 as well as the overexpression of MED25-ACID and MED25-VWA domains efficiently inhibit the transcriptional activity of ERM. Moreover, mutations of amino acid residues that prevent binding of MED25 to ERM strongly reduce transactivation by ERM. Finally we show that siRNA depletion of MED25 diminishes PEA3-driven expression of MMP-1 and Mediator recruitment. In conclusion, this study identifies the PEA3 group members as the first human transcriptional factors that interact with the MED25 ACID/PTOV domain and establishes MED25 as a crucial transducer of their transactivation potential.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Complexo Mediador/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional , Linhagem Celular , Proteínas de Ligação a DNA/química , Humanos , Complexo Mediador/química , Complexo Mediador/genética , Mutação , Domínios e Motivos de Interação entre Proteínas , Fatores de Transcrição/química
14.
Artigo em Inglês | MEDLINE | ID: mdl-22949187

RESUMO

Two-component and phosphorelay signal-transduction proteins are crucial for bacterial cell-cycle regulation in Caulobacter crescentus. ChpT is an essential histidine phosphotransferase that controls the activity of the master cell-cycle regulator CtrA by phosphorylation. Here, the 2.2 Å resolution crystal structure of ChpT is reported. ChpT is a homodimer and adopts the domain architecture of the intracellular part of class I histidine kinases. Each subunit consists of two distinct domains: an N-terminal helical hairpin domain and a C-terminal α/ß domain. The two N-terminal domains are adjacent within the dimer, forming a four-helix bundle. The ChpT C-terminal domain adopts an atypical Bergerat ATP-binding fold.


Assuntos
Caulobacter crescentus/enzimologia , Ciclo Celular , Fosfotransferases/química , Estrutura Quaternária de Proteína , Sequência de Aminoácidos , Caulobacter crescentus/citologia , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína
15.
Protein Expr Purif ; 80(2): 211-6, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21708266

RESUMO

Covalent modification of proteins with SUMO (Small Ubiquitin-like MOdifier) affects many cellular processes, including transcriptional regulation, DNA repair and signal transduction. Although hundreds of SUMO targets have been identified, many biological outcomes of protein sumoylation remain poorly understood. In particular, biochemical and structural analysis can only be easily conducted if highly pure sumoylated substrates are available. Purification of sumoylated substrates in vitro or in bacteria have been previously reported but separating the sumoylated protein from the undesired unmodified fraction is often technically challenging, inefficient and time consuming. Here we develop a new vector system for in vivo sumoylation in Escherichia coli which improves purification of sumoylated proteins. We describe the purification of IκBα, its sumoylation, the subsequent separation and purification of the modified and the unmodified forms and the purification of the complex IκBα-SUMO-1/NF-κB. After a first GST affinity chromatography and GST-tag removal, a unique metal-ion affinity chromatography using a 6xHis-SUMO-1 tag results in mgs of highly pure SUMO-1 modified IκBα. Our pure SUMO-1 modified IκB/NF-κB complex could be a useful tool to identify new interaction partner specific of the SUMO-1 modified IκBα form. This approach may be extended to other SUMO substrates not isolable by classical chromatography techniques.


Assuntos
Proteínas I-kappa B/isolamento & purificação , Subunidade p50 de NF-kappa B/isolamento & purificação , Proteína SUMO-1/metabolismo , Fator de Transcrição RelA/isolamento & purificação , Domínio Catalítico , Cromatografia de Afinidade , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Escherichia coli/metabolismo , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Humanos , Proteínas I-kappa B/genética , Proteínas I-kappa B/metabolismo , Inibidor de NF-kappaB alfa , Subunidade p50 de NF-kappa B/genética , Subunidade p50 de NF-kappa B/metabolismo , Mapeamento de Interação de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteína SUMO-1/genética , Sumoilação , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Ultrafiltração
16.
J Struct Biol ; 174(1): 245-51, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20974256

RESUMO

MED25 (ARC92/ACID1) is a 747 residues subunit specific to higher eukaryote Mediator complex, an essential component of the RNA polymerase II general transcriptional machinery. MED25 is a target of the Herpes simplex virus transactivator protein VP16. MED25 interacts with VP16 through a central MED25 PTOV (Prostate tumour overexpressed)/ACID (Activator interacting domain) domain of unknown structure. As a first step towards understanding the mechanism of recruitment of transactivation domains by MED25, we report here the NMR structure of the MED25 ACID domain. The domain architecture consists of a closed ß-barrel with seven strands (Β1-Β7) and three α-helices (H1-H3), an architecture showing similarities to that of the SPOC (Spen paralog and ortholog C-terminal domain) domain-like superfamily. Preliminary NMR chemical shift mapping showed that VP16 H2 (VP16C) interacts with MED25 ACID through one face of the ß-barrel, defined by strands B4-B7-B6.


Assuntos
Complexo Mediador/química , Ressonância Magnética Nuclear Biomolecular/métodos , Sequência de Aminoácidos , Proteína Vmw65 do Vírus do Herpes Simples/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Homologia Estrutural de Proteína
17.
Biochem Biophys Res Commun ; 399(1): 104-10, 2010 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-20647002

RESUMO

ERM is a member of the PEA3 group of the Ets transcription factor family that plays important roles in development and tumorigenesis. The PEA3s share an N-terminal transactivation domain (TADn) whose activity is inhibited by small ubiquitin-like modifier (SUMO). However, the consequences of sumoylation and its underlying molecular mechanism remain unclear. The domain structure of ERM TADn alone or modified by SUMO-1 was analyzed using small-angle X-ray scattering (SAXS). Low resolution shapes determined ab initio from the scattering data indicated an elongated shape and an unstructured conformation of TADn in solution. Covalent attachment of SUMO-1 does not perturb the structure of TADn as indicated by the linear arrangement of the SUMO moiety with respect to TADn. Thus, ERM belongs to the growing family of proteins that contain intrinsically unstructured regions. The flexible nature of TADn may be instrumental for ERM recognition and binding to diverse molecular partners.


Assuntos
Proteínas de Ligação a DNA/química , Proteína SUMO-1/metabolismo , Fatores de Transcrição/química , Ativação Transcricional , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Estrutura Terciária de Proteína , Espalhamento a Baixo Ângulo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Difração de Raios X
18.
J Bacteriol ; 189(24): 8801-6, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17933894

RESUMO

The heparin-binding hemagglutinin (HBHA) is one of the few virulence factors identified for Mycobacterium tuberculosis. It is a surface-associated adhesin that expresses a number of different activities, including mycobacterial adhesion to nonphagocytic cells and microbial aggregation. Previous evidence indicated that HBHA is likely to form homodimers or homopolymers via a predicted coiled-coil region located within the N-terminal portion of the molecule. Here, we used single-molecule atomic-force microscopy to measure individual homophilic HBHA-HBHA interaction forces. Force curves recorded between tips and supports derivatized with HBHA proteins exposing their N-terminal domains showed a bimodal distribution of binding forces reflecting the formation of dimers or multimers. Moreover, the binding peaks showed elongation forces that were consistent with the unfolding of alpha-helical coiled-coil structures. By contrast, force curves obtained for proteins exposing their lysine-rich C-terminal domains showed a broader distribution of binding events, suggesting that they originate primarily from intermolecular electrostatic bridges between cationic and anionic residues rather than from specific coiled-coil interactions. Notably, similar homophilic HBHA-HBHA interactions were demonstrated on live mycobacteria producing HBHA, while they were not observed on an HBHA-deficient mutant. Together with the fact that HBHA mediates bacterial aggregation, these observations suggest that the single homophilic HBHA interactions measured here reflect the formation of multimers that may promote mycobacterial aggregation.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Mycobacterium tuberculosis/fisiologia , Domínios e Motivos de Interação entre Proteínas , Dimerização , Microscopia de Força Atômica , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína
19.
Protein Expr Purif ; 55(1): 69-74, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17537645

RESUMO

Inositol polyphosphates are the most widespread second messenger molecules in eukaryotic cells. Human Type I inositol 1,4,5-triphosphate (Ins(1,4,5)P(3)) 5-phosphatase removes the D-5 position phosphate from soluble Ins(1,4,5)P(3,) a key event in cell signaling particularly in Ca(2+) homeostasis. In this study, the cDNA encoding human Type I Ins(1,4,5)P(3) 5-phosphatase was subcloned into a modified pMAL expression vector. This plasmid produces a recombinant protein in fusion with affinity tags located at its N-terminus, consisting in a maltose binding protein (MPB) and an octa-histidine stretch. The construction was transformed into Escherichia coli BL21 (DE3) expression strain. This dual tag strategy allows the purification of milligrams of highly purified protein. The recombinant human Type I Ins(1,4,5)P(3) 5-phosphatase is active and can thus be used for functional and structural studies.


Assuntos
Monoéster Fosfórico Hidrolases/biossíntese , Monoéster Fosfórico Hidrolases/isolamento & purificação , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas de Transporte/química , Proteínas de Transporte/genética , Clonagem Molecular , Escherichia coli/genética , Vetores Genéticos/genética , Humanos , Inositol Polifosfato 5-Fosfatases , Proteínas Ligantes de Maltose , Monoéster Fosfórico Hidrolases/genética , Proteínas Recombinantes de Fusão/química
20.
Biochem Biophys Res Commun ; 322(3): 734-9, 2004 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-15336525

RESUMO

CDC25 enzymes are dual-specificity phosphatases involved in the regulation of the cell cycle. No CDC25 enzymes have been described in higher plant organisms. We report here the characterization of an Arabidopsis thaliana CDC25 enzyme, constituted by a sole catalytic domain and devoid of the N-terminal regulatory region found in the human CDC25. We describe the recombinant expression in Escherichia coli of the Arath;CDC25 and its purification for activity assay and structure determination by NMR. The recombinant enzyme has a tyrosine phosphatase activity towards an artificial substrate, a NMR characterization equally concludes to its correct folding. The secondary structure of the protein was predicted on the basis of the assigned chemical shift of (1)H, (15)N, and (13)C backbone atoms of the protein. The presence of a metal ion in the C-terminus of this new protein points to a zinc finger, and sequence homology indicates that this new structural element might be conserved in related plant homologs.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Proteínas Tirosina Fosfatases/metabolismo , Fosfatases cdc25/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Arginina , Sequência de Bases , Clonagem Molecular , Códon/genética , Sequência Conservada , Cisteína , Primers do DNA , Escherichia coli/genética , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Estrutura Secundária de Proteína , Proteínas Recombinantes/metabolismo , Serina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA