Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(2): e0298790, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38346043

RESUMO

When running on a curve, the lower limbs interact with the ground to redirect the trajectory of the centre of mass of the body (CoM). The goal of this paper is to understand how the trajectory of the CoM and the work done to maintain its movements relative to the surroundings (Wcom) are modified as a function of running speed and radius of curvature. Eleven participants ran at different speeds on a straight line and on circular curves with a 6 m and 18 m curvature. The trajectory of the CoM and Wcom were calculated using force-platforms measuring the ground reaction forces and infrared cameras recording the movements of the pelvis. To follow a circular path, runners overcompensate the rotation of their trajectory during contact phases. The deviation from the circular path increases when the radius of curvature decreases and speed increases. Interestingly, an asymmetry between the inner and outer lower limbs emerges as speed increases. The method to evaluate Wcom on a straight-line was adapted using a referential that rotates at heel strike and remains fixed during the whole step cycle. In an 18 m radius curve and at low speeds on a 6 m radius, Wcom changes little compared to a straight-line run. Whereas at 6 m s-1 on a 6 m radius, Wcom increases by ~25%, due to an augmentation in the work to move the CoM laterally. Understanding these adaptations provides valuable insight for sports sciences, aiding in optimizing training and performance in sports with multidirectional movements.


Assuntos
Corrida , Humanos , Fenômenos Biomecânicos , Calcanhar , Cinética , Gravitação , Marcha
2.
Exp Physiol ; 108(11): 1400-1408, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37723935

RESUMO

The mechanical and metabolic responses of walking by obese children are not yet well understood. The objectives of this study were (1) to compare the pendular mechanism (recovery, phase shift by α and ß values, and ratio between forward and vertical mechanical work), the maximum possible elastic energy usage and the bilateral coordination during walking between non-obese and obese children, and (2) to verify if the bilateral coordination could contribute to understanding the pendular mechanism and elastic energy usage in these populations. Nine obese (six female, 8.7 ± 0.5 years, 1.38 ± 0.04 m, 44.4 ± 6.3 kg and 24.1 ± 3.50 kg/m2 ) and eight non-obese (four female, 7.4 ± 0.5 years, 1.31 ± 0.08 m, 26.6 ± 2.1 kg and 16.4 ± 1.40 kg/m2 ) children were analysed during walking on a treadmill at five speeds: 1, 2, 3, 4 and 5 km/h. The results indicated that although the mechanical energy response of the centre of mass during walking is similar between obese and non-obese children, the obese children showed a lower pendulum-like mechanism and greater elastic energy usage during level walking. Therefore, obese children seem to use more elastic energy during walking compared to non-obese children, which may be related to their apparent higher positive work production during the double support phase. Finally, bilateral coordination presented high values at slow speeds in both groups and requires further attention due to its association with falls. NEW FINDINGS: What is the central question of this study? Are there any differences of the pendular and elastic mechanisms and bilateral coordination during walking between non-obese and obese children? What is the main finding and its importance? To our knowledge, this study is the first to analyse the mechanical energy usage and the bilateral coordination of obese and non-obese children during walking. Obese children had a lower pendular recovery mechanism and used more elastic energy compared to non-obese children. The bilateral coordination was higher at slow speeds in both groups and requires further attention due to its association with falls.


Assuntos
Marcha , Obesidade Infantil , Criança , Feminino , Humanos , Fenômenos Biomecânicos , Metabolismo Energético/fisiologia , Teste de Esforço , Marcha/fisiologia , Caminhada/fisiologia , Masculino
3.
J Biomech ; 157: 111704, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37406602

RESUMO

The development and acquisition of mature walking in children is multifactorial, depending among others on foot interaction with the ground, body dynamics and the knowledge of the 'rules' stemming from the gravity field. Indeed, each step the velocity of the centre of mass must be redirected upwards. This redirection may be initiated by the trailing leg, propulsing forward and upward the body before foot contact, or later by the loading limb after the contact with the ground. While it has been suggested that mature walking develops slowly from first independent steps to about 7 years of age, it is still unknown how children acquire the appropriate loading and propulsion forces during the step-to-step transition. To answer that question, twenty-four children (from 3 to 12 years old) and twelve young adults (from 20 to 27 years old) walked on force platforms at different walking speed. The ground reaction forces under each foot were recorded and the vertical velocity of the centre of mass of the body was computed. With decreasing age and increasing velocity (or Froude number), the occurrence of unanticipated transition is higher, related to a different ratio between the vertical support of the front and back leg. The different transition strategy observed in children indicates that body weight transfer from one limb to the other is not fully mature at 12 years old.

4.
Sci Rep ; 13(1): 7286, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142631

RESUMO

Switching locomotion direction is a common task in daily life, and it has been studied extensively in healthy people. Little is known, however, about the locomotor adjustments involved in changing locomotion direction from forward (FW) to sideways (SW) in children with cerebral palsy (CP). The importance of testing the ability of children with CP in this task lies in the assessment of flexible, adaptable adjustments of locomotion as a function of the environmental context. On the one hand, the ability of a child to cope with novel task requirements may provide prognostic cues as to the chances of modifying the gait adaptively. On the other hand, challenging the child with the novel task may represent a useful rehabilitation tool to improve the locomotor performance. SW is an asymmetrical locomotor task and requires a differential control of right and left limb muscles. Here, we report the results of a cross-sectional study comparing FW and SW in 27 children with CP (17 diplegic, 10 hemiplegic, 2-10 years) and 18 age-matched typically developing (TD) children. We analyzed gait kinematics, joint moments, EMG activity of 12 pairs of bilateral muscles, and muscle modules evaluated by factorization of EMG signals. Task performance in several children with CP differed drastically from that of TD children. Only 2/3 of children with CP met the primary outcome, i.e. they succeeded to step sideways, and they often demonstrated attempts to step forward. They tended to rotate their trunk FW, cross one leg over the other, flex the knee and hip. Moreover, in contrast to TD children, children with CP often exhibited similar motor modules for FW and SW. Overall, the results reflect developmental deficits in the control of gait, bilateral coordination and adjustment of basic motor modules in children with CP. We suggest that the sideways (along with the backward) style of locomotion represents a novel rehabilitation protocol that challenges the child to cope with novel contextual requirements.


Assuntos
Paralisia Cerebral , Humanos , Criança , Estudos Transversais , Marcha/fisiologia , Músculo Esquelético/fisiologia , Fenômenos Biomecânicos , Extremidade Inferior
5.
Eur J Appl Physiol ; 123(7): 1455-1467, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36869884

RESUMO

PURPOSE: Humans are amongst few animals that step first on the heel, and then roll on the ball of the foot and toes. While this heel-to-toe rolling pattern has been shown to render an energetic advantage during walking, the effect of different foot contact strategies, on the neuromuscular control of adult walking gaits has received less attention. We hypothesised that deviating from heel-to-toe rolling pattern affects the energy transduction and weight acceptance and re-propulsive phases in gait along with the modification of spinal motor activity. METHODS: Ten subjects walked on a treadmill normally, then placed their feet flat on the ground at each step and finally walked on the balls of the feet. RESULTS: Our results show that when participants deviate from heel-to-toe rolling pattern strategy, the mechanical work increases on average 85% higher (F = 15.5; p < 0.001), mainly linked to a lack of propulsion at late stance. This modification of the mechanical power is related to a differential involvement of lumbar and sacral segment activation. Particularly, the delay between the major bursts of activation is on average 65% smaller, as compared to normal walking (F = 43.2; p < 0.001). CONCLUSION: Similar results are observable in walking plantigrade animals, but also at the onset of independent stepping in toddlers, where the heel-to-toe rolling pattern is not yet established. These indications seem to bring arguments to the fact that the rolling of the foot during human locomotion has evolved to optimise gait, following selective pressures from the evolution of bipedal posture.


Assuntos
Calcanhar , Caminhada , Adulto , Humanos , Calcanhar/fisiologia , Fenômenos Biomecânicos/fisiologia , Caminhada/fisiologia , Dedos do Pé/fisiologia , Pé/fisiologia
6.
J Neurosci ; 42(34): 6566-6580, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35831172

RESUMO

Terrestrial locomotion requires coordinated bilateral activation of limb muscles, with left-right alternation in walking or running, and synchronous activation in hopping or skipping. The neural mechanisms involved in interlimb coordination at birth are well known in different mammalian species, but less so in humans. Here, 46 neonates (of either sex) performed bilateral and unilateral stepping with one leg blocked in different positions. By recording EMG activities of lower-limb muscles, we observed episodes of left-right alternating or synchronous coordination. In most cases, the frequency of EMG oscillations during sequences of consecutive steps was approximately similar between the two sides, but in some cases it was considerably different, with episodes of 2:1 interlimb coordination and episodes of activity deletions on the blocked side. Hip position of the blocked limb significantly affected ipsilateral, but not contralateral, muscle activities. Thus, hip extension backward engaged hip flexor muscle, and hip flexion engaged hip extensors. Moreover, the sudden release of the blocked limb in the posterior position elicited the immediate initiation of the swing phase of the limb, with hip flexion and a burst of an ankle flexor muscle. Extensor muscles showed load responses at midstance. The variable interlimb coordination and its incomplete sensory modulation suggest that the neonatal locomotor networks do not operate in the same manner as in mature locomotion, also because of the limited cortical control at birth. These neonatal mechanisms share many properties with spinal mammalian preparations (i.e., independent pattern generators for each limb, and for flexor and extensor muscles, load, and hip position feedback).SIGNIFICANCE STATEMENT Bilateral coupling and reciprocal activation of flexor and extensor burst generators represent the fundamental mechanisms used by mammalian limbed locomotion. Considerable progress has been made in deciphering the early development of the spinal networks and left-right coordination in different mammals, but less is known about human newborns. We compared bilateral and unilateral stepping in human neonates, where cortical control is still underdeveloped. We found neonatal mechanisms that share many properties with spinal mammalian preparations (i.e., independent pattern generators for each limb, the independent generators for flexor and extensor muscles, load, and hip-position feedback. The variable interlimb coordination and its incomplete sensory modulation suggest that the human neonatal locomotor networks do not operate in the same manner as in mature locomotion.


Assuntos
Locomoção , Músculo Esquelético , Animais , Eletromiografia , Membro Posterior/fisiologia , Humanos , Recém-Nascido , Locomoção/fisiologia , Mamíferos , Músculo Esquelético/fisiologia , Caminhada
7.
Front Hum Neurosci ; 15: 749366, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744664

RESUMO

Locomotor movements are accommodated to various surface conditions by means of specific locomotor adjustments. This study examined underlying age-related differences in neuromuscular control during level walking and on a positive or negative slope, and during stepping upstairs and downstairs. Ten elderly and eight young adults walked on a treadmill at two different speeds and at three different inclinations (0°, +6°, and -6°). They were also asked to ascend and descend stairs at self-selected speeds. Full body kinematics and surface electromyography of 12 lower-limb muscles were recorded. We compared the intersegmental coordination, muscle activity, and corresponding modifications of spinal motoneuronal output in young and older adults. Despite great similarity between the neuromuscular control of young and older adults, our findings highlight subtle age-related differences in all conditions, potentially reflecting systematic age-related adjustments of the neuromuscular control of locomotion across various support surfaces. The main distinctive feature of walking in older adults is a significantly wider and earlier activation of muscles innervated by the sacral segments. These changes in neuromuscular control are reflected in a reduction or lack of propulsion observed at the end of stance in older adults at different slopes, with the result of a delay in the timing of redirection of the centre-of-mass velocity and of an unanticipated step-to-step transition strategy.

8.
Exp Physiol ; 106(9): 1897-1908, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34197674

RESUMO

NEW FINDINGS: What is the topic of this review? This narrative review explores past and recent findings on the mechanical determinants of energy cost during human locomotion, obtained by using a mechanical approach based on König's theorem (Fenn's approach). What advances does it highlight? Developments in analytical methods and their applications allow a better understanding of the mechanical-bioenergetic interaction. Recent advances include the determination of 'frictional' internal work; the association between tendon work and apparent efficiency; a better understanding of the role of energy recovery and internal work in pathological gait (amputees, stroke and obesity); and a comprehensive analysis of human locomotion in (simulated) low gravity conditions. ABSTRACT: During locomotion, muscles use metabolic energy to produce mechanical work (in a more or less efficient way), and energetics and mechanics can be considered as two sides of the same coin, the latter being investigated to understand the former. A mechanical approach based on König's theorem (Fenn's approach) has proved to be a useful tool to elucidate the determinants of the energy cost of locomotion (e.g., the pendulum-like model of walking and the bouncing model of running) and has resulted in many advances in this field. During the past 60 years, this approach has been refined and applied to explore the determinants of energy cost and efficiency in a variety of conditions (e.g., low gravity, unsteady speed). This narrative review aims to summarize current knowledge of the role that mechanical work has played in our understanding of energy cost to date, and to underline how recent developments in analytical methods and their applications in specific locomotion modalities (on a gradient, at low gravity and in unsteady conditions) and in pathological gaits (asymmetric gait pathologies, obese subjects and in the elderly) could continue to push this understanding further. The recent in vivo quantification of new aspects that should be included in the assessment of mechanical work (e.g., frictional internal work and elastic contribution) deserves future research that would improve our knowledge of the mechanical-bioenergetic interaction during human locomotion, as well as in sport science and space exploration.


Assuntos
Corrida , Caminhada , Idoso , Fenômenos Biomecânicos , Metabolismo Energético/fisiologia , Marcha/fisiologia , Humanos , Locomoção/fisiologia , Corrida/fisiologia , Caminhada/fisiologia
9.
PLoS One ; 16(2): e0246372, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33596223

RESUMO

Previous studies found significant modification in spatiotemporal parameters of backward walking in healthy older adults, but the age-related changes in the neuromuscular control have been considered to a lesser extent. The present study compared the intersegmental coordination, muscle activity and corresponding modifications of spinal montoneuronal output during both forward and backward walking in young and older adults. Ten older and ten young adults walked forward and backward on a treadmill at different speeds. Gait kinematics and EMG activity of 14 unilateral lower-limb muscles were recorded. As compared to young adults, the older ones used shorter steps, a more in-phase shank and foot motion, and the activity profiles of muscles innervated from the sacral segments were significantly wider in each walking condition. These findings highlight age-related changes in the neuromuscular control of both forward and backward walking. A striking feature of backward walking was the differential organization of the spinal output as compared to forward gait. In addition, the resulting spatiotemporal map patterns also characterized age-related changes of gait. Finally, modifications of the intersegmental coordination with aging were greater during backward walking. On the whole, the assessment of backward walk in addition to routine forward walk may help identifying or unmasking neuromuscular adjustments of gait to aging.


Assuntos
Envelhecimento , Marcha , Caminhada , Adulto , Idoso , Fenômenos Biomecânicos , Teste de Esforço , Feminino , Humanos , Masculino , Adulto Jovem
10.
Artigo em Inglês | MEDLINE | ID: mdl-32974319

RESUMO

The first years of life represent an important phase of maturation of the central nervous system, processing of sensory information, posture control and acquisition of the locomotor function. Cerebral palsy (CP) is the most common group of motor disorders in childhood attributed to disturbances in the fetal or infant brain, frequently resulting in impaired gait. Here we will consider various findings about functional maturation of the locomotor output in early infancy, and how much the dysfunction of gait in children with CP can be related to spinal neuronal networks vs. supraspinal dysfunction. A better knowledge about pattern generation circuitries in infancy may improve our understanding of developmental motor disorders, highlighting the necessity for regulating the functional properties of abnormally developed neuronal locomotor networks as a target for early sensorimotor rehabilitation. Various clinical approaches and advances in biotechnology are also considered that might promote acquisition of the locomotor function in infants at risk for locomotor delays.

11.
Eur J Appl Physiol ; 120(8): 1841-1854, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32524225

RESUMO

PURPOSE: Intra-limb and muscular coordination during gait are the result of the organisation of the neuromuscular system, which have been widely studied on a flat terrain. Environmental factors, such as the inclination of the terrain, is a challenge for the postural control system to maintain balance. Therefore, we hypothesised that the central nervous system flexibly modifies its control strategies during locomotion on slopes. METHODS: Ten subjects walked on an inclined treadmill at different slopes (from - 9° to + 9°) and speeds (from 0.56 to 2.22 m s-1). Intra-limb coordination was investigated via the Continuous Relative Phase, whereas muscular coordination was investigated by decomposing the coordinated muscle activation profiles into Basic Activation Patterns. RESULTS: A greater stride to stride variability of kinematics was observed during walking on slopes, as compared to walking on the level. On positive slopes, the stride period and width present a greater variability without modification of the time-pattern of the muscular activation and of the variability of intersegmental coordination. On negative slopes, the stride width is larger, the variability of the stride period and of the inter-segmental coordination is greater and the basic activation patterns become broader, especially at slow speeds. CONCLUSION: Our findings suggest that the control strategy of downhill walking corresponds to a more conservative gait pattern, which could be adopted to lower the risk of falling at the cost of a greater energy consumption. In uphill walking, where metabolic demands are high, the strategy adopted may be planned to minimise energy expenditure.


Assuntos
Extremidades/fisiologia , Marcha/fisiologia , Músculo Esquelético/fisiologia , Metabolismo Energético , Feminino , Humanos , Masculino , Equilíbrio Postural , Desempenho Psicomotor , Adulto Jovem
14.
Front Cell Neurosci ; 14: 623759, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33551751

RESUMO

This mini-review focuses on the emergence of locomotor-related movements in early infancy. In particular, we consider multiples precursor behaviors of locomotion as a manifestation of the development of the neuronal networks and their link in the establishment of precocious locomotor skills. Despite the large variability of motor behavior observed in human babies, as in animals, afferent information is already processed to shape the behavior to specific situations and environments. Specifically, we argue that the closed-loop interaction between the neural output and the physical dynamics of the mechanical system should be considered to explore the complexity and flexibility of pattern generation in human and animal neonates.

15.
PLoS One ; 12(10): e0186963, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29073208

RESUMO

When ascending (descending) a slope, positive (negative) work must be performed to overcome changes in gravitational potential energy at the center of body mass (COM). This modifies the pendulum-like behavior of walking. The aim of this study is to analyze how energy exchange and mechanical work done vary within a step across slopes and speeds. Ten subjects walked on an instrumented treadmill at different slopes (from -9° to 9°), and speeds (between 0.56 and 2.22 m s-1). From the ground reaction forces, we evaluated energy of the COM, recovery (i.e. the potential-kinetic energy transduction) and pendular energy savings (i.e. the theoretical reduction in work due to this recovered energy) throughout the step. When walking uphill as compared to level, pendular energy savings increase during the first part of stance (when the COM is lifted) and decreases during the second part. Conversely in downhill walking, pendular energy savings decrease during the first part of stance and increase during the second part (when the COM is lowered). In uphill and downhill walking, the main phase of external work occurs around double support. Uphill, the positive work phase is extended during the beginning of single support to raise the body. Downhill, the negative work phase starts before double support, slowing the downward velocity of the body. Changes of the pendulum-like behavior as a function of slope can be illustrated by tilting the 'classical compass model' backwards (uphill) or forwards (downhill).


Assuntos
Metabolismo Energético , Caminhada/fisiologia , Teste de Esforço , Humanos , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...