Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 57(8): 3273-3290, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32514861

RESUMO

Probucol, a hypocholesterolemic compound, is neuroprotective in several models of neurodegenerative diseases but has serious adverse effects in vivo. We now describe the design and synthesis of two new probucol analogues that protect against glutamate-induced oxidative cell death, also known as ferroptosis, in cultured mouse hippocampal (HT22) cells and in primary cortical neurons, while probucol did not show any protective effect. Treatment with both compounds did not affect glutathione depletion but still significantly decreased glutamate-induced production of oxidants, mitochondrial superoxide generation, and mitochondrial hyperpolarization in HT22 cells. Both compounds increase glutathione peroxidase (GPx) 1 levels and GPx activity, also exhibiting protection against RSL3, a GPx4 inactivator. These two compounds are therefore potent activators of GPx activity making further studies of their neuroprotective activity in vivo worthwhile.


Assuntos
Ferroptose/efeitos dos fármacos , Glutationa Peroxidase/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Probucol/farmacologia , Animais , Antioxidantes/metabolismo , Morte Celular/efeitos dos fármacos , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Camundongos , Mitocôndrias/metabolismo , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
2.
Cell Calcium ; 70: 47-55, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28545724

RESUMO

Ca2+ ions play a fundamental role in cell death mediated by oxidative glutamate toxicity or oxytosis, a form of programmed cell death similar and possibly identical to other forms of cell death like ferroptosis. Ca2+ influx from the extracellular space occurs late in a cascade characterized by depletion of the intracellular antioxidant glutathione, increases in cytosolic reactive oxygen species and mitochondrial dysfunction. Here, we aim to compare oxidative glutamate toxicity with ferroptosis, address the signaling pathways that culminate in Ca2+ influx and cell death and discuss the proteins that mediate this. Recent evidence hints toward a role of the machinery responsible for store-operated Ca2+ entry (SOCE), which refills the endoplasmic reticulum (ER) after receptor-mediated ER Ca2+ release or other forms of store depletion. Pharmacological inhibition of SOCE or transcriptional downregulation of proteins involved in SOCE like the ER Ca2+ sensor STIM1, the plasma membrane Ca2+ channels Orai1 and TRPC1 and the linking protein Homer protects against oxidative glutamate toxicity and direct oxidative stress caused by hydrogen peroxide or 1-methyl-4-phenylpyridinium (MPP+) injury, a cellular model of Parkinson's disease. This suggests that SOCE inhibition might have some potential therapeutic effects in human disease associated with oxidative stress like neurodegenerative disorders.


Assuntos
Apoptose , Cálcio/metabolismo , Ácido Glutâmico/toxicidade , Ferro/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo
3.
Neurochem Int ; 117: 167-173, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-28527631

RESUMO

Mitofusin-2 (MFN2) is a GTPase in the outer mitochondrial membrane involved in the regulation of mitochondrial fusion and bioenergetics. MFN2 also plays a role in mitochondrial fusion induced by changes in the intracellular redox state. Adding oxidized glutathione (GSSG), the core cellular stress indicator, to mitochondrial preparations stimulates mitochondrial fusion by inducing disulphide bond-mediated oligomer formation of MFN2 and its homolog MFN1 which involve cysteine 684 (C684) of MFN2. Mitochondrial hyperfusion represents an adaptive stress response that confers transient protection by increasing mitochondrial ATP production but how this depends on the thiol switch C684 in MFN2 has not been investigated. We now studied mitochondrial function using high-resolution respirometry in cells stably expressing wildtype or C684A MFN2 in MFN2-deficient fibroblasts in response to alterations of the redox state. Empty vector and untransfected cells served as controls. A single treatment of cells with 100 µM hydrogen peroxide 24 h before analysis had no effect on wildtype cells, but normalized the otherwise increased respiration of knockout cells and significantly increased respiration in C684A cells. In line with this, treating permeabilized cells for 10 min with 1 mM GSH greatly reduced respiration only in C684A cells. Our data indicate that mutation of this cysteine which forms disulphide bridges in an oxidative state, apparently renders MFN2 more susceptible to alterations of the redox environment. It remains to be investigated whether other posttranslational modifications like glutathionylation might play an additional role.


Assuntos
Respiração Celular/fisiologia , Forma Celular/fisiologia , GTP Fosfo-Hidrolases/deficiência , Mitocôndrias/metabolismo , Compostos de Sulfidrila/metabolismo , Animais , Células Cultivadas , GTP Fosfo-Hidrolases/genética , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Oxirredução
4.
J Neurosci ; 34(28): 9213-21, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-25009255

RESUMO

Synaptic rearrangements during critical periods of postnatal brain development rely on the correct formation, strengthening, and elimination of synapses and associated dendritic spines to form functional networks. The correct balance of these processes is thought to be regulated by synapse-specific changes in the subunit composition of NMDA-type glutamate receptors (NMDARs). Among these, the nonconventional NMDAR subunit GluN3A has been suggested to play a role as a molecular brake in synaptic maturation. We tested here this hypothesis using confocal time-lapse imaging in rat hippocampal organotypic slices and assessed the role of GluN3A-containing NMDARs on spine dynamics. We found that overexpressing GluN3A reduced spine density over time, increased spine elimination, and decreased spine stability. The effect of GluN3A overexpression could be further enhanced by using an endocytosis-deficient GluN3A mutant and reproduced by silencing the adaptor protein PACSIN1, which prevents the endocytosis of endogenous GluN3A. Conversely, silencing of GluN3A reduced spine elimination and favored spine stability. Moreover, reexpression of GluN3A in more mature tissue reinstated an increased spine pruning and a low spine stability. Mechanistically, the decreased stability in GluN3A overexpressing neurons could be linked to a failure of plasticity-inducing protocols to selectively stabilize spines and was dependent on the ability of GluN3A to bind the postsynaptic scaffold GIT1. Together, these data provide strong evidence that GluN3A prevents the activity-dependent stabilization of synapses thereby promoting spine pruning, and suggest that GluN3A expression operates as a molecular signal for controlling the extent and timing of synapse maturation.


Assuntos
Envelhecimento/patologia , Envelhecimento/fisiologia , Espinhas Dendríticas/fisiologia , Espinhas Dendríticas/ultraestrutura , Hipocampo/ultraestrutura , Glicoproteínas de Membrana/metabolismo , Transmissão Sináptica/fisiologia , Potenciais de Ação/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Feminino , Hipocampo/fisiologia , Masculino , Plasticidade Neuronal/fisiologia , Ratos
5.
Neuron ; 80(4): 1025-38, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24183704

RESUMO

Drug-evoked synaptic plasticity in the mesolimbic dopamine (DA) system reorganizes neural circuits that may lead to addictive behavior. The first cocaine exposure potentiates AMPAR excitatory postsynaptic currents (EPSCs) onto DA neurons of the VTA but reduces the amplitude of NMDAR-EPSCs. While plasticity of AMPAR transmission is expressed by insertion of calcium (Ca(2+))-permeable GluA2-lacking receptors, little is known about the expression mechanism for altered NMDAR transmission. Combining ex vivo patch-clamp recordings, mouse genetics, and subcellular Ca(2+) imaging, we observe that cocaine drives the insertion of NMDARs that are quasi-Ca(2+)-impermeable and contain GluN3A and GluN2B subunits. These GluN3A-containing NMDARs appear necessary for the expression of cocaine-evoked plasticity of AMPARs. We identify an mGluR1-dependent mechanism to remove these noncanonical NMDARs that requires Homer/Shank interaction and protein synthesis. Our data provide insight into the early cocaine-driven reorganization of glutamatergic transmission onto DA neurons and offer GluN3A-containing NMDARs as new targets in drug addiction.


Assuntos
Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/fisiologia , Sinapses/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Cálcio/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microinjeções , Técnicas de Patch-Clamp , Interferência de RNA , Receptores de AMPA/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais/efeitos dos fármacos , Técnicas Estereotáxicas , Transmissão Sináptica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA