Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38078905

RESUMO

Sudden cardiac death (SCD) from ventricular tachycardia/fibrillation (VT/VF) is a leading cause of death, but current therapies are limited. Despite extensive research on drugs targeting sarcolemmal ion channels, none have proven sufficiently effective for preventing SCD. Sarcoplasmic ryanodine receptor 2 (RyR2) Ca2+ release channels, the downstream effectors of sarcolemmal ion channels, are underexplored in this context. Recent evidence implicates reactive oxygen species (ROS)-mediated oxidation and hyperactivity of RyR2s in the pathophysiology of SCD. We tested the hypothesis that RyR2 inhibition of failing arrhythmogenic hearts reduces sarcoplasmic Ca2+ leak and repolarization lability, mitigates VT/VF/SCD and improves contractile function. We used a guinea pig model that replicates key clinical aspects of human nonischemic HF, such as a prolonged QT interval, a high prevalence of spontaneous arrhythmic SCD, and profound Ca2+ leak via a hyperactive RyR2. HF animals were randomized to receive dantrolene (DS) or placebo in early or chronic HF. We assessed the incidence of VT/VF and SCD (primary outcome), ECG heart rate and QT variability, echocardiographic left ventricular (LV) structure and function, immunohistochemical LV fibrosis, and sarcoplasmic RyR2 oxidation. DS treatment prevented VT/VF and SCD by decreasing dispersion of repolarization and ventricular arrhythmias. Compared to placebo, DS lowered resting heart rate, preserved chronotropic competency during transient ß-adrenergic challenge, and improved heart rate variability and cardiac function. Inhibition of RyR2 hyperactivity with dantrolene mitigates the vicious cycle of sarcoplasmic Ca2+ leak-induced increases in diastolic Ca2+ and ROS-mediated RyR2 oxidation, thereby reducing repolarization lability and protecting against VT/VF/SCD. Moreover, the consequent increase in sarcoplasmic Ca2+ load improves contractile function. These potentially life-saving effects of RyR2 inhibition warrant further investigation, such as clinical studies of repurposing dantrolene as a potential new therapy for heart failure and/or SCD.


Each year, more than 300,000 people experience cardiac arrest or sudden cardiac death. Sudden cardiac death is caused by irregular heartbeats known as ventricular tachycardia or ventricular fibrillation, which prevent the heart from pumping blood. During a regular heart rhythm, the heart muscles contract and relax, regulated by a coordinated rise and fall of calcium ions within heart cells. In the cells of diseased hearts, on the other hand, calcium leaks out of a compartment known as the sarcoplasmic reticulum in an uncontrolled manner. This happens because an ion channel in the membrane of the sarcoplasmic reticulum known as ryanodine receptor 2 becomes hyperactive and releases calcium in an uncontrolled manner. This abnormal calcium release leads to irregular calcium waves, which can make the heart's electrical properties unstable, causing ventricular tachycardia, ventricular fibrillation and sudden cardiac death. Joshi et al. tested whether dantrolene, a molecule that blocks ryanodine receptor 2, can stop calcium leaks from the sarcoplasmic reticulum and prevent lethal arrhythmias and sudden cardiac death in failing hearts. To investigate this, Joshi et al. induced heart failure in guinea pigs that have abnormal heart calcium signalling similar to human heart failure, and then treated the animals with either dantrolene or a placebo. The results indicate that blocking ryanodine receptor 2 hyperactivity with dantrolene prevents lethal arrhythmias and sudden cardiac death by blocking calcium leaks and by preventing the instability of the electrical properties of the heart. Additionally, Joshi et al. found that dantrolene also improved the diseased heart's ability to pump adequate amounts of blood, allowing failing hearts to meet increased cardiovascular demands, and thereby improving the heart's overall function. The proposed studies come from a strong clinical need to improve bad outcomes in people who keep having fatal heart rhythm episodes despite getting the best medical care. Many heart failure patients are plagued by recurrent defibrillator shocks to abort sudden cardiac death from relentless lethal heart rhythms. These shocks are painful, injure the heart, and worsen the quality of life. Unfortunately, management options are extremely limited for these patients. The findings of Joshi et al. indicate that dantrolene may be a potential treatment for people with fatal heart rhythms who are at risk of sudden cardiac death and could have a positive impact on these people's quality of life. However, before this can happen, dantrolene will first have to be thoroughly tested to ensure effectivity and safety in humans. In any case, Joshi et al. have opened a new avenue in the search for medications to treat deadly arrhythmias and sudden cardiac death.


Assuntos
Insuficiência Cardíaca , Taquicardia Ventricular , Humanos , Animais , Cobaias , Canal de Liberação de Cálcio do Receptor de Rianodina , Dantroleno/farmacologia , Dantroleno/uso terapêutico , Espécies Reativas de Oxigênio , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/tratamento farmacológico , Arritmias Cardíacas/complicações , Arritmias Cardíacas/tratamento farmacológico , Morte Súbita Cardíaca/prevenção & controle , Morte Súbita Cardíaca/etiologia , Cálcio/metabolismo , Miócitos Cardíacos/metabolismo
2.
bioRxiv ; 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37662391

RESUMO

Introduction: Sudden cardiac death (SCD) from ventricular tachycardia/fibrillation (VT/VF) are a leading cause of death, but current therapies are limited. Despite extensive research on drugs targeting sarcolemmal ion channels, none have proven sufficiently effective for preventing SCD. Sarcoplasmic ryanodine receptor 2 (RyR2) Ca 2+ release channels, the downstream effectors of sarcolemmal ion channels, are underexplored in this context. Recent evidence implicates reactive oxygen species (ROS)- mediated oxidation and hyperactivity of RyR2s in the pathophysiology of SCD. Objective: To test the hypothesis that RyR2 inhibition of failing arrhythmogenic hearts reduces sarcoplasmic Ca 2+ leak and repolarization lability, mitigates VT/VF/SCD and improves contractile function. Methods: We used a guinea pig model that replicates key clinical aspects of human nonischemic HF, such as a prolonged QT interval, a high prevalence of spontaneous arrhythmic SCD, and profound Ca 2+ leak via a hyperactive RyR2. HF animals were randomized to receive dantrolene (DS) or placebo in early or chronic HF. We assessed the incidence of VT/VF and SCD (primary outcome), ECG heart rate and QT variability, echocardiographic left ventricular (LV) structure and function, immunohistochemical LV fibrosis, and sarcoplasmic RyR2 oxidation. Results: DS treatment prevented VT/VF and SCD by decreasing dispersion of repolarization and ventricular arrhythmias. Compared to placebo, DS lowered resting heart rate, preserved chronotropic competency during transient ß-adrenergic challenge, and improved heart rate variability and cardiac function. Conclusion: Inhibition of RyR2 hyperactivity with dantrolene mitigates the vicious cycle of sarcoplasmic Ca 2+ leak-induced increases in diastolic Ca 2+ and ROS-mediated RyR2 oxidation, thereby increasing repolarization lability and protecting against VT/VF/SCD. Moreover, the consequent increase in sarcoplasmic Ca 2+ load improves contractile function. These potentially life-saving effects of RyR2 inhibition warrant further investigation, such as clinical studies of repurposing dantrolene as a potential new therapy for heart failure and/or SCD.

3.
bioRxiv ; 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36778270

RESUMO

RATIONALE: Sudden cardiac arrest (SCA) and heart failure (HF) are leading causes of death. The underlying mechanisms are incompletely understood, limiting the design of new therapies. Whereas most autonomic modulation therapies have not shown clear benefit in HF patients, growing evidence indicates cardiac sympathetic denervation (CSD) exerts cardioprotective effects. The underlying molecular and cellular mechanisms remain unexplored. OBJECTIVE: Based on the hypothesis that mitochondrial reactive oxygen species (mROS) drive the pathogenesis of HF and SCA, we investigated whether CSD prevents SCA and HF by improving mitochondrial antioxidant capacity and redox balance, to correct impaired Ca2+ handling and repolarization reserve. METHODS AND RESULTS: We interrogated CSD-specific responses in pressure-overload HF models with spontaneous SCA using in vivo echocardiographic and electrocardiographic studies and in vitro biochemical and functional studies including ratiometric measures of mROS, Ca2+ and sarcomere dynamics in left ventricular myocytes. Pressure-overloaded HF reduced mitochondrial antioxidant capacity and increased mROS, which impaired ß-adrenergic signaling and caused SR Ca2+ leak, reducing SR Ca2+ and increasing diastolic Ca2+, impaired myofilament contraction and further increased the sympathetic stress response. CSD improved contractile function and mitigated mROS-mediated diastolic Ca2+ overload, dispersion of repolarization, triggered activity and SCA by upregulating mitochondrial antioxidant and NADPH-producing enzymes. CONCLUSIONS: Our findings support a fundamental role of sympathetic stress-induced downregulation of mROS scavenging enzymes and RyR-leak mediated diastolic Ca2+ overload in HF and SCA pathogenesis that are mitigated by CSD. This first report on the molecular and cellular mechanisms of CSD supports its evaluation in additional high-risk patient groups.

4.
Circ Res ; 130(5): 741-759, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35109669

RESUMO

BACKGROUND: Abnormalities in cardiac energy metabolism occur in heart failure (HF) and contribute to contractile dysfunction, but their role, if any, in HF-related pathologic remodeling is much less established. CK (creatine kinase), the primary muscle energy reserve reaction which rapidly provides ATP at the myofibrils and regenerates mitochondrial ADP, is down-regulated in experimental and human HF. We tested the hypotheses that pathologic remodeling in human HF is related to impaired cardiac CK energy metabolism and that rescuing CK attenuates maladaptive hypertrophy in experimental HF. METHODS: First, in 27 HF patients and 14 healthy subjects, we measured cardiac energetics and left ventricular remodeling using noninvasive magnetic resonance 31P spectroscopy and magnetic resonance imaging, respectively. Second, we tested the impact of metabolic rescue with cardiac-specific overexpression of either Ckmyofib (myofibrillar CK) or Ckmito (mitochondrial CK) on HF-related maladaptive hypertrophy in mice. RESULTS: In people, pathologic left ventricular hypertrophy and dilatation correlate closely with reduced myocardial ATP levels and rates of ATP synthesis through CK. In mice, transverse aortic constriction-induced left ventricular hypertrophy and dilatation are attenuated by overexpression of CKmito, but not by overexpression of CKmyofib. CKmito overexpression also attenuates hypertrophy after chronic isoproterenol stimulation. CKmito lowers mitochondrial reactive oxygen species, tissue reactive oxygen species levels, and upregulates antioxidants and their promoters. When the CK capacity of CKmito-overexpressing mice is limited by creatine substrate depletion, the protection against pathologic remodeling is lost, suggesting the ADP regenerating capacity of the CKmito reaction rather than CK protein per se is critical in limiting adverse HF remodeling. CONCLUSIONS: In the failing human heart, pathologic hypertrophy and adverse remodeling are closely related to deficits in ATP levels and in the CK energy reserve reaction. CKmito, sitting at the intersection of cardiac energetics and redox balance, plays a crucial role in attenuating pathologic remodeling in HF. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT00181259.


Assuntos
Creatina Quinase Mitocondrial , Insuficiência Cardíaca , Difosfato de Adenosina , Trifosfato de Adenosina/metabolismo , Animais , Creatina Quinase/metabolismo , Creatina Quinase Mitocondrial/metabolismo , Metabolismo Energético , Insuficiência Cardíaca/metabolismo , Humanos , Hipertrofia Ventricular Esquerda/metabolismo , Camundongos , Miocárdio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Remodelação Ventricular
5.
Curr Med Imaging ; 16(4): 371-382, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32410539

RESUMO

BACKGROUND: This work uses genetic algorithm (GA) for optimum design of patient specific spinal implants (pedicle screw) with varying implant diameter and bone condition. The optimum pedicle screw fixation in terms of implant diameter is on the basis of minimum strain difference from intact (natural) to implantation at peri-prosthetic bone for the considered six different peri-implant positions. METHODS: This design problem is expressed as an optimization problem using the desirability function, where the data generated by finite element analysis is converted into an artificial neural network (ANN) model. The finite element model is generated from CT scan data. Thereafter all the ANN predictions of the microstrain in six positions are converted to unitless desirability value varying between 0 and 1, which is then combined to form the composite desirability. Maximization of the composite desirability is done using GA where composite desirability should be made to go up as close as possible to 1. If the composite desirability is 1, then all 'strain difference values in 6 positions' are 0. RESULTS: The optimum solutions obtained can easily be used for making patient-specific spinal implants.


Assuntos
Imageamento Tridimensional/métodos , Parafusos Pediculares , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Fusão Vertebral/métodos , Tomografia Computadorizada por Raios X/métodos , Análise de Elementos Finitos , Humanos , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Redes Neurais de Computação
6.
Int J Numer Method Biomed Eng ; 35(6): e3191, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30801978

RESUMO

The objective is to make the strain deviation before and after implantation adjacent to the femoral implant as close as possible to zero. Genetic algorithm is applied for this optimization of strain deviation, measured in eight separate positions. The concept of composite desirability is introduced in such a way that if the microstrain deviation values for all eight cases are 0, then the composite desirability is 1. Artificial neural network (ANN) models are developed to capture the correlation of the microstrain in femur implants using the data generated through finite element simulation. Then, the ANN model is used as the surrogate model, which in combination with the desirability function serves as the objective function for optimization. The optimum achievable deviation was found to vary with the bone condition. The optimum implant geometry varied for different bone condition, and the findings act as guideline for designing patient-specific implant.


Assuntos
Fêmur/anatomia & histologia , Prótese de Quadril , Desenho de Prótese , Algoritmos , Feminino , Análise de Elementos Finitos , Humanos , Pessoa de Meia-Idade , Redes Neurais de Computação
7.
Circ Res ; 123(3): 356-371, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-29898892

RESUMO

RATIONALE: Despite increasing prevalence and incidence of heart failure (HF), therapeutic options remain limited. In early stages of HF, sudden cardiac death (SCD) from ventricular arrhythmias claims many lives. Reactive oxygen species (ROS) have been implicated in both arrhythmias and contractile dysfunction. However, little is known about how ROS in specific subcellular compartments contribute to HF or SCD pathophysiology. The role of ROS in chronic proteome remodeling has not been explored. OBJECTIVE: We will test the hypothesis that elevated mitochondrial ROS (mROS) is a principal source of oxidative stress in HF and in vivo reduction of mROS mitigates SCD. METHODS AND RESULTS: Using a unique guinea pig model of nonischemic HF that recapitulates important features of human HF, including prolonged QT interval and high incidence of spontaneous arrhythmic SCD, compartment-specific ROS sensors revealed increased mROS in resting and contracting left ventricular myocytes in failing hearts. Importantly, the mitochondrially targeted antioxidant (MitoTEMPO) normalized global cellular ROS. Further, in vivo MitoTEMPO treatment of HF animals prevented and reversed HF, eliminated SCD by decreasing dispersion of repolarization and ventricular arrhythmias, suppressed chronic HF-induced remodeling of the expression proteome, and prevented specific phosphoproteome alterations. Pathway analysis of mROS-sensitive networks indicated that increased mROS in HF disrupts the normal coupling between cytosolic signals and nuclear gene programs driving mitochondrial function, antioxidant enzymes, Ca2+ handling, and action potential repolarization, suggesting new targets for therapeutic intervention. CONCLUSIONS: mROS drive both acute emergent events, such as electrical instability responsible for SCD, and those that mediate chronic HF remodeling, characterized by suppression or altered phosphorylation of metabolic, antioxidant, and ion transport protein networks. In vivo reduction of mROS prevents and reverses electrical instability, SCD, and HF. Our findings support the feasibility of targeting the mitochondria as a potential new therapy for HF and SCD while identifying new mROS-sensitive protein modifications.


Assuntos
Morte Súbita Cardíaca/prevenção & controle , Insuficiência Cardíaca/metabolismo , Mitocôndrias Cardíacas/metabolismo , Proteoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Cálcio/metabolismo , Morte Súbita Cardíaca/etiologia , Cobaias , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/tratamento farmacológico , Mitocôndrias Cardíacas/efeitos dos fármacos , Compostos Organofosforados/farmacologia , Compostos Organofosforados/uso terapêutico , Estresse Oxidativo , Fosforilação , Piperidinas/farmacologia , Piperidinas/uso terapêutico
8.
J Cardiovasc Electrophysiol ; 28(10): 1189-1195, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28727191

RESUMO

INTRODUCTION: Epicardial ablation is becoming an important part of management in patients with ventricular tachycardia (VT). Posterior epicardial access via the Sosa or needle-in-needle (NIN) approach for epicardial VT ablation is considered to be the method of choice for most electrophysiologists. Anterior epicardial access as an alternative technique has recently been proposed, but there are limited data about its safety, efficacy, and the rate of immediate complications. In this study, we report our experience with anterior epicardial access between 2009 and 2016. METHODS: Between 2009 and June 2016, 100 consecutive patients underwent epicardial VT ablation using an anterior approach. The success rate, epicardial bleeding, and other complications related to the epicardial access in these patients were compared to the previously reported rate of complications in patients whom epicardial access was performed using the NIN or Sosa techniques. RESULTS: Anterior epicardial access was obtained successfully in 100% of patients in the first attempt. The success rate of the anterior approach was comparable with the reported success rate of the NIN technique (100% vs. 100%, P value not significant) but better than the Sosa technique (100% vs. 94%, P = 0.012). None of the patients in the anterior approach series suffered from significant pericardial bleeding (defined as greater than 80 mL of blood loss), RV puncture/damage, or need for an emergent cardiac surgery. CONCLUSION: An anterior epicardial approach is feasible and appears to have an acceptable safety profile in comparison with other epicardial approaches.


Assuntos
Ablação por Cateter/métodos , Pericárdio/fisiopatologia , Taquicardia Ventricular/fisiopatologia , Taquicardia Ventricular/terapia , Ablação por Cateter/efeitos adversos , Fenômenos Eletrofisiológicos , Mapeamento Epicárdico , Hemorragia/epidemiologia , Hemorragia/etiologia , Hospitalização , Humanos , Imageamento por Ressonância Magnética , Pericárdio/diagnóstico por imagem , Complicações Pós-Operatórias/epidemiologia , Taquicardia Ventricular/diagnóstico por imagem , Centros de Atenção Terciária , Tomografia Computadorizada por Raios X , Resultado do Tratamento
9.
Europace ; 18(12): 1818-1828, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27044982

RESUMO

AIMS: The need for a readily available, inexpensive, non-invasive method for improved risk stratification of heart failure (HF) patients is paramount. Prior studies have proposed that distinct fluctuation patterns underlying the variability of physiological signals have unique prognostic value. We tested this hypothesis in an extensively phenotyped cohort of HF patients using EntropyXQT, a novel non-linear measure of cardiac repolarization dynamics. METHODS AND RESULTS: In a prospective, multicentre, observational study of 852 patients in sinus rhythm undergoing clinically indicated primary prevention implantable cardioverter-defibrillator (ICD) implantation (2003-10), exposures included demographics, history, physical examination, medications, laboratory results, serum biomarkers, ejection fraction, conventional electrocardiographic (ECG) analyses of heart rate and QT variability, and EntropyXQT. The primary outcome was first 'appropriate' ICD shock for ventricular arrhythmias. The secondary outcome was composite events (appropriate ICD shock and all-cause mortality). After exclusions, the cohort (n = 816) had a mean age of 60 ± 13 years, 28% women, 36% African Americans, 56% ischaemic cardiomyopathy, and 29 ± 16% Seattle HF risk score (SHFS) 5-year predicted mortality. Over 45 ± 24 months, there were 134 appropriate shocks and 166 deaths. After adjusting for 30 exposures, the hazard ratios (comparing the 5th to 1st quintile of EntropyXQT) for primary and secondary outcomes were 3.29 (95% CI 1.74-6.21) and 2.28 (1.53-3.41), respectively. Addition of EntropyXQT to a model comprised of the exposures or SHFS significantly increased net reclassification and the ROC curve area. CONCLUSIONS: EntropyXQT measured during ICD implantation strongly and independently predicts appropriate shock and all-cause mortality over follow-up. EntropyXQT complements conventional risk predictors and has the potential for broad clinical application.


Assuntos
Arritmias Cardíacas/diagnóstico , Morte Súbita Cardíaca/prevenção & controle , Desfibriladores Implantáveis , Idoso , Eletrocardiografia , Entropia , Feminino , Insuficiência Cardíaca/epidemiologia , Frequência Cardíaca , Humanos , Masculino , Pessoa de Meia-Idade , Isquemia Miocárdica/epidemiologia , Prevenção Primária/métodos , Modelos de Riscos Proporcionais , Estudos Prospectivos , Medição de Risco , Fatores de Risco , Estados Unidos
10.
J Biol Chem ; 291(21): 11185-97, 2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27048652

RESUMO

Oxidative stress arises from an imbalance in the production and scavenging rates of reactive oxygen species (ROS) and is a key factor in the pathophysiology of cardiovascular disease and aging. The presence of parallel pathways and multiple intracellular compartments, each having its own ROS sources and antioxidant enzymes, complicates the determination of the most important regulatory nodes of the redox network. Here we quantified ROS dynamics within specific intracellular compartments in the cytosol and mitochondria and determined which scavenging enzymes exert the most control over antioxidant fluxes in H9c2 cardiac myoblasts. We used novel targeted viral gene transfer vectors expressing redox-sensitive GFP fused to sensor domains to measure H2O2 or oxidized glutathione. Using genetic manipulation in heart-derived H9c2 cells, we explored the contribution of specific antioxidant enzymes to ROS scavenging and glutathione redox potential within each intracellular compartment. Our findings reveal that antioxidant flux is strongly dependent on mitochondrial substrate catabolism, with availability of NADPH as a major rate-controlling step. Moreover, ROS scavenging by mitochondria significantly contributes to cytoplasmic ROS handling. The findings provide fundamental information about the control of ROS scavenging by the redox network and suggest novel interventions for circumventing oxidative stress in cardiac cells.


Assuntos
Sequestradores de Radicais Livres/metabolismo , Peróxido de Hidrogênio/farmacologia , Mitocôndrias/enzimologia , Mioblastos Cardíacos/enzimologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Linhagem Celular , Oxirredução/efeitos dos fármacos , Ratos
11.
J Biol Chem ; 290(52): 30658-68, 2015 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-26511314

RESUMO

All organisms possess fundamental metabolic pathways to ensure that needed carbon and sulfur compounds are provided to the cell in the proper chemical form and oxidation state. For most organisms capable of using CO2 as sole source of carbon, ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (Rubisco) catalyzes primary carbon dioxide assimilation. In addition, sulfur salvage pathways are necessary to ensure that key sulfur-containing compounds are both available and, where necessary, detoxified in the cell. Using knock-out mutations and metabolomics in the bacterium Rhodospirillum rubrum, we show here that Rubisco concurrently catalyzes key and essential reactions for seemingly unrelated but physiologically essential central carbon and sulfur salvage metabolic pathways of the cell. In this study, complementation and mutagenesis studies indicated that representatives of all known extant functional Rubisco forms found in nature are capable of simultaneously catalyzing reactions required for both CO2-dependent growth as well as growth using 5-methylthioadenosine as sole sulfur source under anaerobic photosynthetic conditions. Moreover, specific inactivation of the CO2 fixation reaction did not affect the ability of Rubisco to support anaerobic 5-methylthioadenosine metabolism, suggesting that the active site of Rubisco has evolved to ensure that this enzyme maintains both key functions. Thus, despite the coevolution of both functions, the active site of this protein may be differentially modified to affect only one of its key functions.


Assuntos
Proteínas de Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Desoxiadenosinas/metabolismo , Redes e Vias Metabólicas , Rhodospirillum rubrum/enzimologia , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/metabolismo , Tionucleosídeos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Carbono/metabolismo , Rhodospirillum rubrum/química , Rhodospirillum rubrum/genética , Ribulose-Bifosfato Carboxilase/genética , Enxofre/metabolismo
12.
Am J Physiol Heart Circ Physiol ; 308(4): H291-302, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25485897

RESUMO

Hearts from type 2 diabetic (T2DM) subjects are chronically subjected to hyperglycemia and hyperlipidemia, both thought to contribute to oxidizing conditions and contractile dysfunction. How redox alterations and contractility interrelate, ultimately diminishing T2DM heart function, remains poorly understood. Herein we tested whether the fatty acid palmitate (Palm), in addition to its energetic contribution, rescues function by improving redox [glutathione (GSH), NAD(P)H, less oxidative stress] in T2DM rat heart trabeculae subjected to high glucose. Using cardiac trabeculae from Zucker Diabetic Fatty (ZDF) rats, we assessed the impact of low glucose (EG) and high glucose (HG), in absence or presence of Palm or insulin, on force development, energetics, and redox responses. We found that in EG ZDF and lean trabeculae displayed similar contractile work, yield of contractile work (Ycw), representing the ratio of force time integral over rate of O2 consumption. Conversely, HG had a negative impact on Ycw, whereas Palm, but not insulin, completely prevented contractile loss. This effect was associated with higher GSH, less oxidative stress, and augmented matrix GSH/thioredoxin (Trx) in ZDF mitochondria. Restoration of myocardial redox with GSH ethyl ester also rescued ZDF contractile function in HG, independently from Palm. These results support the idea that maintained redox balance, via increased GSH and Trx antioxidant activities to resist oxidative stress, is an essential protective response of the diabetic heart to keep contractile function.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Contração Miocárdica , Miocárdio/metabolismo , Estresse Oxidativo , Animais , Diabetes Mellitus Tipo 2/fisiopatologia , Cardiomiopatias Diabéticas/fisiopatologia , Glutationa/metabolismo , Coração/efeitos dos fármacos , Coração/fisiopatologia , Insulina/sangue , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Oxirredução , Consumo de Oxigênio , Palmitatos/sangue , Palmitatos/farmacologia , Ratos , Ratos Zucker , Tiorredoxinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...