Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Atherosclerosis ; 372: 32-40, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37023506

RESUMO

BACKGROUND AND AIMS: The NO-cGMP pathway is essential for angiogenesis, vasculogenesis and post-natal neovascularization. The key enzyme responsible for the synthesis of cGMP following binding of NO is soluble guanylate cyclase (sGC). Riociguat is the first member of a novel class of compounds known as sGC stimulators. We tested the hypothesis that stimulation of sGC with riociguat might improve neovascularization in response to ischemia. METHODS: In vitro, the angiogenic effect of riociguat was tested in human umbilical vein endothelial cells (HUVECs). In vivo, neovascularization was investigated in a mouse model of limb ischemia. C57Bl/6 mice were treated by gavage with 3 mg/kg/day of riociguat for a total of 28 days. After two weeks of treatment, hindlimb ischemia was surgically induced by femoral artery removal. RESULTS: In a matrigel assay in vitro, riociguat dose-dependently stimulates tubule formation in HUVECs. Cell migration (scratch assay) is also increased in HUVECs treated with riociguat. At the molecular level, riociguat treatment leads to rapid activation of the p44/p42 MAP kinase pathway in HUVECs. Inhibition of protein kinase G (PKG) activity supresses both p44/p42 MAP kinase activation and angiogenesis in HUVECs treated with riociguat. In vivo, treatment with riociguat improves blood flow recovery after ischemia (Laser Doppler imaging), and increases capillary density in ischemic muscles (CD31 immunostaining). Clinically, this is associated with a significant decrease of ambulatory impairment and ischemic damages. Interestingly, mice treated with riociguat also show a 94% increase in the number of bone marrow-derived pro-angiogenic cells (PACs) compared to control mice. Moreover, riociguat treatment is associated with a significant improvement of PAC functions including migratory capacity, adhesion to an endothelial monolayer, and integration into endothelial tubular networks. CONCLUSIONS: The sGC stimulator riociguat promotes angiogenesis and improves neovascularization after ischemia. The mechanism involves PKG-dependent activation of p44/p42 MAP kinase pathway, together with an improvement of PAC number and functions. sGC stimulation could constitute a novel therapeutic strategy to reduce tissue ischemia in patients with severe atherosclerotic diseases.


Assuntos
Proteína Quinase 1 Ativada por Mitógeno , Neovascularização Patológica , Humanos , Camundongos , Animais , Guanilil Ciclase Solúvel/farmacologia , Isquemia , Células Endoteliais da Veia Umbilical Humana , Neovascularização Fisiológica , Membro Posterior
2.
Circulation ; 145(18): 1412-1426, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35089805

RESUMO

BACKGROUND: Human pluripotent stem cell (hPSC)-derived cardiomyocytes (hPSC-CMs) have tremendous promise for application in cardiac regeneration, but their translational potential is limited by an immature phenotype. We hypothesized that large-scale manufacturing of mature hPSC-CMs could be achieved through culture on polydimethylsiloxane (PDMS)-lined roller bottles and that the transplantation of these cells would mediate better structural and functional outcomes than with conventional immature hPSC-CM populations. METHODS: We comprehensively phenotyped hPSC-CMs after in vitro maturation for 20 and 40 days on either PDMS or standard tissue culture plastic substrates. All hPSC-CMs were generated from a transgenic hPSC line that stably expressed a voltage-sensitive fluorescent reporter to facilitate in vitro and in vivo electrophysiological studies, and cardiomyocyte populations were also analyzed in vitro by immunocytochemistry, ultrastructure and fluorescent calcium imaging, and bulk and single-cell transcriptomics. We next compared outcomes after the transplantation of these populations into a guinea pig model of myocardial infarction using end points including histology, optical mapping of graft- and host-derived action potentials, echocardiography, and telemetric electrocardiographic monitoring. RESULTS: We demonstrated the economic generation of >1×108 mature hPSC-CMs per PDMS-lined roller bottle. Compared with their counterparts generated on tissue culture plastic substrates, PDMS-matured hPSC-CMs exhibited increased cardiac gene expression and more mature structural and functional properties in vitro. More important, intracardiac grafts formed with PDMS-matured myocytes showed greatly enhanced structure and alignment, better host-graft electromechanical integration, less proarrhythmic behavior, and greater beneficial effects on contractile function. CONCLUSIONS: We describe practical methods for the scaled generation of mature hPSC-CMs and provide the first evidence that the transplantation of more mature cardiomyocytes yields better outcomes in vivo.


Assuntos
Miócitos Cardíacos , Células-Tronco Pluripotentes , Animais , Diferenciação Celular , Linhagem Celular , Cobaias , Humanos , Miócitos Cardíacos/metabolismo , Plásticos/metabolismo , Células-Tronco Pluripotentes/metabolismo
3.
Nat Commun ; 12(1): 3155, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34039977

RESUMO

Compact cardiomyocytes that make up the ventricular wall of the adult heart represent an important therapeutic target population for modeling and treating cardiovascular diseases. Here, we established a differentiation strategy that promotes the specification, proliferation and maturation of compact ventricular cardiomyocytes from human pluripotent stem cells (hPSCs). The cardiomyocytes generated under these conditions display the ability to use fatty acids as an energy source, a high mitochondrial mass, well-defined sarcomere structures and enhanced contraction force. These ventricular cells undergo metabolic changes indicative of those associated with heart failure when challenged in vitro with pathological stimuli and were found to generate grafts consisting of more mature cells than those derived from immature cardiomyocytes following transplantation into infarcted rat hearts. hPSC-derived atrial cardiomyocytes also responded to the maturation cues identified in this study, indicating that the approach is broadly applicable to different subtypes of the heart. Collectively, these findings highlight the power of recapitulating key aspects of embryonic and postnatal development for generating therapeutically relevant cell types from hPSCs.


Assuntos
Técnicas de Cultura de Células/métodos , Insuficiência Cardíaca/terapia , Infarto do Miocárdio/terapia , Miócitos Cardíacos/transplante , Células-Tronco Pluripotentes/fisiologia , Animais , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Modelos Animais de Doenças , Embrião de Mamíferos , Desenvolvimento Embrionário/fisiologia , Átrios do Coração/citologia , Átrios do Coração/embriologia , Insuficiência Cardíaca/patologia , Ventrículos do Coração/citologia , Ventrículos do Coração/embriologia , Ventrículos do Coração/patologia , Humanos , Infarto do Miocárdio/complicações , Infarto do Miocárdio/patologia , Miócitos Cardíacos/fisiologia , Ratos
5.
Stem Cell Res Ther ; 11(1): 417, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32988411

RESUMO

BACKGROUND: Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) show tremendous promise for cardiac regeneration, but the successful development of hESC-CM-based therapies requires improved tools to investigate their electrical behavior in recipient hearts. While optical voltage mapping is a powerful technique for studying myocardial electrical activity ex vivo, we have previously shown that intra-cardiac hESC-CM grafts are not labeled by conventional voltage-sensitive fluorescent dyes. We hypothesized that the water-soluble voltage-sensitive dye di-2-ANEPEQ would label engrafted hESC-CMs and thereby facilitate characterization of graft electrical function and integration. METHODS: We developed and validated a novel optical voltage mapping strategy based on the simultaneous imaging of the calcium-sensitive fluorescent protein GCaMP3, a graft-autonomous reporter of graft activation, and optical action potentials (oAPs) derived from di-2-ANEPEQ, which labels both graft and host myocardium. Cardiomyocytes from three different GCaMP3+ hESC lines (H7, RUES2, or ESI-17) were transplanted into guinea pig models of subacute and chronic infarction, followed by optical mapping at 2 weeks post-transplantation. RESULTS: Use of a water-soluble voltage-sensitive dye revealed pro-arrhythmic properties of GCaMP3+ hESC-CM grafts from all three lines including slow conduction velocity, incomplete host-graft coupling, and spatially heterogeneous patterns of activation that varied beat-to-beat. GCaMP3+ hESC-CMs from the RUES2 and ESI-17 lines both showed prolonged oAP durations both in vitro and in vivo. Although hESC-CMs partially remuscularize the injured hearts, histological evaluation revealed immature graft structure and impaired gap junction expression at this early timepoint. CONCLUSION: Simultaneous imaging of GCaMP3 and di-2-ANEPEQ allowed us to acquire the first unambiguously graft-derived oAPs from hESC-CM-engrafted hearts and yielded critical insights into their arrhythmogenic potential and line-to-line variation.


Assuntos
Células-Tronco Embrionárias Humanas , Miócitos Cardíacos , Animais , Diferenciação Celular , Células-Tronco Embrionárias , Cobaias , Miocárdio
6.
Aging (Albany NY) ; 12(11): 10180-10193, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32457253

RESUMO

Aging is associated with impaired neovascularization in response to ischemia. MicroRNAs are small noncoding RNAs emerging as key regulators of physiological and pathological processes. Here we investigated the potential role of microRNAs in endothelial cell senescence and age-dependent impairment of neovascularization. Next generation sequencing and qRT-PCR analyses identified miR-130a as a pro-angiogenic microRNA which expression is significantly reduced in old mouse aortic endothelial cells (ECs). Transfection of young ECs with a miR-130a inhibitor leads to accelerated senescence and reduced angiogenic functions. Conversely, forced expression of miR-130a in old ECs reduces senescence and improves angiogenesis. In a mouse model of hindlimb ischemia, intramuscular injection of miR-130a mimic in older mice restores blood flow recovery and vascular densities in ischemic muscles, improves mobility and reduces tissue damage. miR-130a directly targets antiangiogenic homeobox genes MEOX2 and HOXA5. MEOX2 and HOXA5 are significantly increased in the ischemic muscles of aging mice, but forced expression of miR-130a reduces the expression of these factors. miR-130a treatment after ischemia is also associated with increased number and improved functional activities of pro-angiogenic cells (PACs). Forced expression of miR-130a could constitute a novel strategy to improve blood flow recovery and reduce ischemia in older patients with ischemic vascular diseases.


Assuntos
Envelhecimento/genética , Senescência Celular/genética , Endotélio Vascular/patologia , Isquemia/patologia , MicroRNAs/metabolismo , Neovascularização Fisiológica/genética , Fatores Etários , Idoso , Animais , Aorta/citologia , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Senescência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Endotélio Vascular/citologia , Membro Posterior/irrigação sanguínea , Proteínas de Homeodomínio/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , MicroRNAs/agonistas , MicroRNAs/antagonistas & inibidores , Neovascularização Fisiológica/efeitos dos fármacos , Cultura Primária de Células , Fatores de Transcrição/genética , Adulto Jovem
8.
Sci Rep ; 7(1): 14143, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-29075011

RESUMO

Adverse perinatal conditions can lead to developmental programming of cardiovascular diseases. Prematurely born infants are often exposed to high oxygen levels, which in animal models has been associated with endothelial dysfunction, hypertension, and cardiac remodeling during adulthood. Here we found that adult mice that have been transiently exposed to O2 after birth show defective neovasculariation after hindlimb ischemia, as demonstrated by impaired blood flow recovery, reduced vascular density in ischemic muscles and increased tissue damages. Ischemic muscles isolated from mice exposed to O2 after birth exhibit increased oxidative stress levels and reduced expression of superoxide dismutase 1 (SOD1) and vascular endothelial growth factor (VEGF). Pro-angiogenic cells (PACs) have been shown to have an important role for postnatal neovascularisation. We found that neonatal exposure to O2 is associated with reduced number of PACs in adults. Moreover, the angiogenic activities of both PACs and mature mouse aortic endothelial cells (MAECs) are significantly impaired in mice exposed to hyperoxia after birth. Our results indicate that neonatal exposure to high oxygen levels leads to impaired ischemia-induced neovascularization during adulthood. The mechanism involves deleterious effects on oxidative stress levels and angiogenic signals in ischemic muscles, together with dysfunctional activities of PACs and mature endothelial cells.


Assuntos
Membro Posterior/irrigação sanguínea , Hiperóxia/fisiopatologia , Isquemia/fisiopatologia , Neovascularização Fisiológica/fisiologia , Animais , Animais Recém-Nascidos , Adesão Celular , Modelos Animais de Doenças , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos Endogâmicos C57BL , Oxigênio/efeitos adversos , Fluxo Sanguíneo Regional , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Arterioscler Thromb Vasc Biol ; 37(5): 900-908, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28254813

RESUMO

OBJECTIVE: Hypercholesterolemia is an atherosclerotic condition that is associated with impaired neovascularization in response to ischemia. This study sought to define the role of microRNAs in that pathophysiology. APPROACH AND RESULTS: Next-generation sequencing and quantitative reverse transcription polymerase chain reaction analyses identified miR-150 as a proangiogenic microRNA, which expression is significantly reduced in the ischemic muscles of hypercholesterolemic apolipoprotein E-deficient (ApoE-/-) mice, and in human umbilical vein endothelial cells exposed to oxidized low-density lipoprotein. Forced expression of miR-150 using a miR mimic could rescue oxidized low-density lipoprotein-mediated impairment of endothelial cell migration and tubule formation in vitro. In a mouse model of hindlimb ischemia, intramuscular injection of miR-150 mimic restored blood flow recuperation, vascular densities in ischemic muscles, and functional mobility in ApoE-/- mice. Treatment of ApoE-/- mice with miR-150 also increased the number and the activities of proangiogenic cells. miR-150 targets SRC kinase signaling inhibitor 1, an important regulator of Src (proto-oncogene tyrosine-protein kinase Src) activity. Here we found that hypercholesterolemia and oxidized low-density lipoprotein exposure are associated with increased SRC kinase signaling inhibitor 1 expression and decreased Src activity. However, treatment with miR-150 mimic reduces SRC kinase signaling inhibitor 1 expression and restores Src and downstream endothelial nitric oxide synthase and Akt (protein kinase B) activities both in vitro and in vivo. We also demonstrate the interrelation between miR-150 and SRC kinase signaling inhibitor 1 and their importance for endothelial cell angiogenic activities. CONCLUSIONS: Hypercholesterolemia is associated with reduced expression of miR-150, impaired Src signaling, and inefficient neovascularization in response to ischemia. Forced expression of miR-150 using a miR mimic could constitute a novel therapeutic strategy to improve ischemia-induced neovascularization in atherosclerotic conditions.


Assuntos
Aterosclerose/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Isquemia/metabolismo , MicroRNAs/metabolismo , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/fisiopatologia , Células Cultivadas , Modelos Animais de Doenças , Feminino , Fenoterol , Predisposição Genética para Doença , Membro Posterior , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Hipercolesterolemia/genética , Hipercolesterolemia/metabolismo , Isquemia/genética , Isquemia/fisiopatologia , Lipoproteínas LDL/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Transdução de Sinais , Transfecção , Quinases da Família src/metabolismo
10.
J Cell Mol Med ; 21(9): 2211-2222, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28345812

RESUMO

This study sought to determine the potential role of microRNAs (miRNAs) in the detrimental effects of cigarette smoke on angiogenesis and neovascularization. Using large-scale miRNA profiling and qRT-PCR analyses, we identified let-7f as a pro-angiogenic miRNA which expression is significantly reduced in HUVECs treated with cigarette smoke extracts (CSE), and in the ischemic muscles of mice that are exposed to cigarette smoke (MES). In a mouse model of hindlimb ischaemia, intramuscular injection of let-7f mimic restored ischaemia-induced neovascularization in MES. Doppler flow ratios and capillary density in ischemic muscles were significantly improved in MES treated with let-7f mimic. Clinically, this was associated with reduced ambulatory impairment and hindlimb ischaemic damage. Treatment with let-7f mimic could also rescue pro-angiogenic cell (PAC) number and function (attachment, proliferation, migration) in MES. ALK5 (TGF-ßR1), an important modulator of angiogenesis, is a target of let-7f. Here we show that ALK5 is increased in HUVECs exposed to CSE and in the ischaemic muscles of MES. This is associated with a downstream activation of the anti-angiogenic factors SMAD2/3 and PAI-1. Importantly, treatment with let-7f mimic reduces the expression of ALK5, SMAD2/3 and PAI-1 both in vitro and in vivo. Moreover, let-7f overexpression or ALK5 inhibition can rescue angiogenesis in HUVECs exposed to CSE. Cigarette smoke exposure is associated with reduced expression of let-7f and activation of the anti-angiogenic TGF-ß/ALK5 pathway. Overexpression of let-7f using a miRNA mimic could constitute a novel therapeutic strategy to improve ischaemia-induced neovascularization in pathological conditions.


Assuntos
Regulação da Expressão Gênica , Isquemia/patologia , MicroRNAs/metabolismo , Neovascularização Patológica/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Fumar/efeitos adversos , Fator de Crescimento Transformador beta/metabolismo , Animais , Contagem de Células , Feminino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Isquemia/genética , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Neovascularização Patológica/patologia , Receptor do Fator de Crescimento Transformador beta Tipo I , Transdução de Sinais
11.
Sci Transl Med ; 7(318): 318ra200, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26676607

RESUMO

Autoantibodies to components of apoptotic cells, such as anti-perlecan antibodies, contribute to rejection in organ transplant recipients. However, mechanisms of immunization to apoptotic components remain largely uncharacterized. We used large-scale proteomics, with validation by electron microscopy and biochemical methods, to compare the protein profiles of apoptotic bodies and apoptotic exosome-like vesicles, smaller extracellular vesicles released by endothelial cells downstream of caspase-3 activation. We identified apoptotic exosome-like vesicles as a central trigger for production of anti-perlecan antibodies and acceleration of rejection. Unlike apoptotic bodies, apoptotic exosome-like vesicles triggered the production of anti-perlecan antibodies in naïve mice and enhanced anti-perlecan antibody production and allograft inflammation in mice transplanted with an MHC (major histocompatibility complex)-incompatible aortic graft. The 20S proteasome core was active within apoptotic exosome-like vesicles and controlled their immunogenic activity. Finally, we showed that proteasome activity in circulating exosome-like vesicles increased after vascular injury in mice. These findings open new avenues for predicting and controlling maladaptive humoral responses to apoptotic cell components that enhance the risk of rejection after transplantation.


Assuntos
Injúria Renal Aguda/enzimologia , Aorta/transplante , Apoptose/imunologia , Autoanticorpos/biossíntese , Micropartículas Derivadas de Células/enzimologia , Exossomos/enzimologia , Rejeição de Enxerto/enzimologia , Isquemia/enzimologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Injúria Renal Aguda/imunologia , Injúria Renal Aguda/patologia , Aloenxertos , Animais , Aorta/enzimologia , Aorta/imunologia , Aorta/patologia , Autoanticorpos/imunologia , Biomarcadores/metabolismo , Micropartículas Derivadas de Células/imunologia , Micropartículas Derivadas de Células/patologia , Células Cultivadas , Modelos Animais de Doenças , Exossomos/imunologia , Exossomos/patologia , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/patologia , Proteoglicanas de Heparan Sulfato/imunologia , Proteoglicanas de Heparan Sulfato/metabolismo , Células Endoteliais da Veia Umbilical Humana/enzimologia , Células Endoteliais da Veia Umbilical Humana/imunologia , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Imunidade Humoral , Isquemia/imunologia , Isquemia/patologia , Túbulos Renais Proximais/enzimologia , Túbulos Renais Proximais/imunologia , Túbulos Renais Proximais/patologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/enzimologia , Músculo Liso Vascular/imunologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/enzimologia , Miócitos de Músculo Liso/imunologia , Miócitos de Músculo Liso/patologia , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/imunologia , Proteômica/métodos , Ratos , Fatores de Tempo
12.
Biomed Res Int ; 2015: 949624, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26583150

RESUMO

Patients with left ventricle (LV) volume overload (VO) remain in a compensated state for many years although severe dilation is present. The myocardial capacity to fulfill its energetic demand may delay decompensation. We performed a gene expression profile, a model of chronic VO in rat LV with severe aortic valve regurgitation (AR) for 9 months, and focused on the study of genes associated with myocardial energetics. Methods. LV gene expression profile was performed in rats after 9 months of AR and compared to sham-operated controls. LV glucose and fatty acid (FA) uptake was also evaluated in vivo by positron emission tomography in 8-week AR rats treated or not with fenofibrate, an activator of FA oxidation (FAO). Results. Many LV genes associated with mitochondrial function and metabolism were downregulated in AR rats. FA ß-oxidation capacity was significantly impaired as early as two weeks after AR. Treatment with fenofibrate, a PPARα agonist, normalized both FA and glucose uptake while reducing LV dilation caused by AR. Conclusion. Myocardial energy substrate preference is affected early in the evolution of LV-VO cardiomyopathy. Maintaining a relatively normal FA utilization in the myocardium could translate into less glucose uptake and possibly lesser LV remodeling.


Assuntos
Insuficiência da Valva Aórtica/genética , Metabolismo Energético/genética , Insuficiência Cardíaca/genética , Hipertrofia Ventricular Esquerda/genética , Animais , Insuficiência da Valva Aórtica/tratamento farmacológico , Insuficiência da Valva Aórtica/fisiopatologia , Volume Cardíaco/genética , Modelos Animais de Doenças , Fenofibrato/administração & dosagem , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Humanos , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/fisiopatologia , Mitocôndrias Cardíacas/genética , Oxirredução , PPAR alfa/genética , Ratos , Transcriptoma , Função Ventricular Esquerda/efeitos dos fármacos , Função Ventricular Esquerda/genética
13.
Atherosclerosis ; 242(2): 450-60, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26295797

RESUMO

BACKGROUND: Renin is the rate limiting step for the activation of the renin-angiotensin-aldosterone system, which is linked to the development of endothelial dysfunction, hypertension and atherosclerosis. However, the specific role of renin during physiological responses to tissue ischemia is currently unknown. Aliskiren is the only direct renin inhibitor that is clinically used as an orally active antihypertensive drug. Here we tested the hypothesis that aliskiren might improve neovascularization in response to ischemia. METHODS AND RESULTS: At a dose that did not modulate blood pressure (10 mg/kg), aliskiren led to improved blood flow recovery after hindlimb ischemia in C57BL/6 mice (Doppler flow ratios 0.71 ± 0.07 vs. 0.55 ± 0.03; P < 0.05). In ischemic muscles, treatment with aliskiren was associated with a significant increase of vascular density, reduced oxidative stress levels and increased expression of VEGF and eNOS. Aliskiren treatment also significantly increased the number of bone marrow-derived endothelial progenitor cells (EPCs) after hindlimb ischemia. Moreover, the angiogenic properties of EPCs (migration, adhesion, integration into tubules) were significantly improved in mice treated with aliskiren. In vitro, aliskiren improves cellular migration and tubule formation in HUVECs. This is associated with an increased expression of nitric oxide (NO), and a significant reduction of oxidative stress levels. Importantly, the angiogenic properties of aliskiren in vitro and in vivo are completely abolished following treatment with the NOS inhibitor l-NAME. CONCLUSION: Direct renin inhibition with aliskiren leads to improved ischemia-induced neovascularization that is not dependant on blood pressure lowering. The mechanism involves beneficial effects of aliskiren on oxidative stress and NO angiogenic pathway, together with an increase in the number and the functional activities of EPCs.


Assuntos
Amidas/química , Pressão Sanguínea/efeitos dos fármacos , Fumaratos/química , Isquemia/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Renina/antagonistas & inibidores , Animais , Anti-Hipertensivos/química , Células da Medula Óssea/citologia , Adesão Celular , Movimento Celular , Células Endoteliais/citologia , Células Progenitoras Endoteliais/citologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , NG-Nitroarginina Metil Éster/química , Óxido Nítrico/química , Estresse Oxidativo , Oxigênio/química , Espécies Reativas de Oxigênio , Sistema Renina-Angiotensina/efeitos dos fármacos , Superóxidos/química
14.
Atherosclerosis ; 241(2): 569-78, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26100680

RESUMO

BACKGROUND: Psychological stress (PS) has been associated with the development of cardiovascular diseases and adverse long-term outcomes after ischemic events. However, the precise mechanisms involved are not completely understood. Here we investigated the effect of PS on ischemia-induced neovascularization, and the potential therapeutic effect of fluoxetine in this condition. METHODS AND RESULTS: Balb/c mice were subjected or not to chronic restraint stress. After 3 weeks, hindlimb ischemia was surgically induced by femoral artery removal. We found that blood flow recovery was significantly impaired in mice exposed to PS compared to controls (Doppler flow ratio (DFR) 0.61 ± 0.07 vs. 0.80 ± 0.07, p < 0.05). At the microvascular level, capillary density was significantly reduced in ischemic muscles of mice exposed to PS (38 ± 1 vs. 74 ± 3 capillaries per field, p < 0.001). This correlated with increased oxidative stress levels and reduced expression of VEGF and VEGF signalling molecules (p44/p42 MAPK, Akt) in ischemic muscles. We found that the number of pro-angiogenic cells (PACs) was significantly reduced in mice exposed to PS. In addition, oxidative stress levels (DCF-DA, DHE) were increased in PACs isolated from mice exposed to PS, and this was associated with impaired PAC functional activities (migration, adhesion, and integration into tubules). Importantly, treatment of mice exposed to PS with the selective serotonin reuptake inhibitor (SSRI) fluoxetine improved all the angiogenic parameters, and completely rescued PS-induced impairment of neovascularization. CONCLUSION: PS impairs ischemia-induced neovascularization. Potential mechanisms involved include reduced activation of the VEGF pathway in ischemic tissues, increased oxidative stress levels and reduced number and functional activities of PACs. Our results suggest that fluoxetine may represent a novel therapeutic strategy to improve neovascularization and reduce ischemia in patients suffering from cardiovascular diseases and exposed to PS.


Assuntos
Fluoxetina/uso terapêutico , Isquemia/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Estresse Psicológico , Animais , Antidepressivos de Segunda Geração/uso terapêutico , Velocidade do Fluxo Sanguíneo/efeitos dos fármacos , Peso Corporal , Movimento Celular , Colágeno/química , Combinação de Medicamentos , Células Endoteliais/metabolismo , Membro Posterior/irrigação sanguínea , Células Endoteliais da Veia Umbilical Humana , Humanos , Isquemia/psicologia , Laminina/química , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo , Proteoglicanas/química , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
BMC Cardiovasc Disord ; 14: 190, 2014 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-25518920

RESUMO

BACKGROUND: Patients with chronic aortic valve regurgitation (AR) causing left ventricular (LV) volume overload can remain asymptomatic for many years despite having a severely dilated heart. The sudden development of heart failure is not well understood but alterations of myocardial energy metabolism may be contributive. We studied the evolution of LV energy metabolism in experimental AR. METHODS: LV glucose utilization was evaluated in vivo by positron emission tomography (microPET) scanning of 6-month AR rats. Sham-operated or AR rats (n = 10-30 animals/group) were evaluated 3, 6 or 9 months post-surgery. We also tested treatment intervention in order to evaluate their impact on metabolism. AR rats (20 animals) were trained on a treadmill 5 times a week for 9 months and another group of rats received a beta-blockade treatment (carvedilol) for 6 months. RESULTS: MicroPET revealed an abnormal increase in glucose consumption in the LV free wall of AR rats at 6 months. On the other hand, fatty acid beta-oxidation was significantly reduced compared to sham control rats 6 months post AR induction. A significant decrease in citrate synthase and complex 1 activity suggested that mitochondrial oxidative phosphorylation was also affected maybe as soon as 3 months post-AR.Moderate intensity endurance training starting 2 weeks post-AR was able to partially normalize the activity of various myocardial enzymes implicated in energy metabolism. The same was true for the AR rats treated with carvedilol (30 mg/kg/d). Responses to these interventions were different at the level of gene expression. We measured mRNA levels of a number of genes implicated in the transport of energy substrates and we observed that training did not reverse the general down-regulation of these genes in AR rats whereas carvedilol normalized the expression of most of them. CONCLUSION: This study shows that myocardial energy metabolism remodeling taking place in the dilated left ventricle submitted to severe volume overload from AR can be partially avoided by exercise or beta-blockade in rats.


Assuntos
Antagonistas de Receptores Adrenérgicos beta 1/farmacologia , Insuficiência da Valva Aórtica/metabolismo , Metabolismo Energético/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Condicionamento Físico Animal , Resistência Física , Animais , Insuficiência da Valva Aórtica/diagnóstico por imagem , Modelos Animais de Doenças , Regulação para Baixo , Glucose/metabolismo , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/efeitos dos fármacos , Masculino , Miocárdio/metabolismo , Ratos Wistar , Ultrassonografia
16.
BMC Cardiovasc Disord ; 14: 123, 2014 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-25249193

RESUMO

BACKGROUND: The composition of a diet can influence myocardial metabolism and development of left ventricular hypertrophy (LVH). The impact of a high-fat diet in chronic left ventricular volume overload (VO) causing eccentric LVH is unknown. This study examined the effects of chronic ingestion of a high-fat diet in rats with chronic VO caused by severe aortic valve regurgitation (AR) on LVH, function and on myocardial energetics and survival. METHODS: Male Wistar rats were divided in four groups: Shams on control or high-fat (HF) diet (15 rats/group) and AR rats fed with the same diets (ARC (n = 56) and ARHF (n = 32)). HF diet was started one week before AR induction and the protocol was stopped 30 weeks later. RESULTS: As expected, AR caused significant LV dilation and hypertrophy and this was exacerbated in the ARHF group. Moreover, survival in the ARHF group was significantly decreased compared the ARC group. Although the sham animals on HF also developed significant obesity compared to those on control diet, this was not associated with heart hypertrophy. The HF diet in AR rats partially countered the expected shift in myocardial energy substrate preference usually observed in heart hypertrophy (from fatty acids towards glucose). Systolic function was decreased in AR rats but HF diet had no impact on this parameter. The response to HF diet of different fatty acid oxidation markers as well as the increase in glucose transporter-4 translocation to the plasma membrane compared to ARC was blunted in AR animals compared to those on control diet. CONCLUSIONS: HF diet for 30 weeks decreased survival of AR rats and worsened eccentric hypertrophy without affecting systolic function. The expected adaptation of myocardial energetics to volume-overload left ventricle hypertrophy in AR animals seemed to be impaired by the high-fat diet suggesting less metabolic flexibility.


Assuntos
Insuficiência da Valva Aórtica/complicações , Dieta Hiperlipídica/efeitos adversos , Hipertrofia Ventricular Esquerda/etiologia , Obesidade/complicações , Adaptação Fisiológica , Animais , Insuficiência da Valva Aórtica/diagnóstico , Insuficiência da Valva Aórtica/metabolismo , Insuficiência da Valva Aórtica/fisiopatologia , Modelos Animais de Doenças , Metabolismo Energético , Ácidos Graxos/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Hipertrofia Ventricular Esquerda/diagnóstico , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/fisiopatologia , Masculino , Miocárdio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Obesidade/metabolismo , Obesidade/fisiopatologia , Oxirredução , Ratos Wistar , Fatores de Risco , Fatores de Tempo , Função Ventricular Esquerda
17.
Atherosclerosis ; 237(1): 194-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25244503

RESUMO

BACKGROUND: Elsibucol is a metabolically stable derivative of probucol with antioxidant, anti-inflammatory and antiproliferative properties. Here we investigated the effect of elsibucol on the development of atherosclerosis following arterial injury in hypercholesterolemic rabbits. METHODS AND RESULTS: New Zealand White rabbits were fed a high cholesterol diet that was supplemented or not with 0.5% elsibucol, 1% elsibucol or 1% probucol. An angioplasty of the iliac artery was performed after 3 weeks of diet. We found that treatment with elsibucol significantly decreases blood total cholesterol, LDLc and triglyceride levels. This is associated with a significant 46% reduction of neointimal hyperplasia following arterial injury. Interestingly, the effect of elsibucol on cholesterol levels and neointimal formation appears to be more pronounced than that of probucol. In vitro, elsibucol reduces vascular smooth muscle cell proliferation without affecting cell viability. In vivo, treatment with elsibucol is associated with a significant reduction of cellular proliferation (PCNA immunostaining), oxidative stress (nitrotyrosine immunostaining), VCAM-1 expression and macrophage infiltration in injured arteries. Despite its potent effect on neointimal hyperplasia, elsibucol does not prevent endothelial healing (Evans blue staining) following arterial injury. CONCLUSIONS: In hypercholesterolemic animals, elsibucol inhibits atherosclerosis and preserves endothelial healing following arterial injury. The mechanisms involved include lowering of blood cholesterol levels together with a reduction of oxidative stress and inflammation in injured arteries.


Assuntos
Artérias/patologia , Aterosclerose/tratamento farmacológico , Butiratos/uso terapêutico , Colesterol/sangue , Inflamação/sangue , Estresse Oxidativo , Fenóis/uso terapêutico , Doenças Vasculares/tratamento farmacológico , Animais , Antioxidantes/química , Artérias Carótidas/patologia , Proliferação de Células , Sobrevivência Celular , LDL-Colesterol/sangue , Endotélio Vascular/patologia , Hipercolesterolemia/tratamento farmacológico , Artéria Ilíaca/patologia , Imuno-Histoquímica , Masculino , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Neointima/patologia , Coelhos
18.
Circ Heart Fail ; 6(5): 1021-8, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23861486

RESUMO

BACKGROUND: Aortic valve regurgitation (AR) is a volume-overload disease causing severe eccentric left ventricular (LV) hypertrophy and eventually heart failure. There is currently no approved drug to treat patients with AR. Many vasodilators including angiotensin-converting enzyme inhibitors have been evaluated in clinical trials, but although some results were promising, others were inconclusive. Overall, no drug has yet been able to improve clinical outcome in AR and the controversy remains. We have previously shown in an animal model that captopril (Cpt) reduced LV hypertrophy and protected LV systolic function, but we had not evaluated the clinical outcome. This protocol was designed to evaluate the effects of a long-term Cpt treatment on survival in the same animal model of severe aortic valve regurgitation. METHODS AND RESULTS: Forty Wistar rats with AR were treated or untreated with Cpt (1 g/L in drinking water) for a period of 7 months to evaluate survival, myocardial remodeling, and function by echocardiography as well as myocardial metabolism by µ positron emission tomography scan. Survival was significantly improved in Cpt-treated animals with a survival benefit visible as soon as after 4 months of treatment. Cpt reduced LV dilatation and LV hypertrophy. It also significantly improved the myocardial metabolic profile by restoring the level of fatty acids metabolic enzymes and use. CONCLUSIONS: In a controlled animal model of pure severe aortic valve regurgitation, Cpt treatment reduced LV remodeling and LV hypertrophy and improved myocardial metabolic profile and survival. These results support the need to reevaluate the role of angiotensin-converting enzyme inhibitors in humans with AR in a large, carefully designed prospective clinical trial.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/farmacologia , Insuficiência da Valva Aórtica/tratamento farmacológico , Captopril/farmacologia , Metabolismo Energético/efeitos dos fármacos , Miocárdio/enzimologia , Remodelação Ventricular/efeitos dos fármacos , Animais , Insuficiência da Valva Aórtica/diagnóstico , Insuficiência da Valva Aórtica/enzimologia , Insuficiência da Valva Aórtica/fisiopatologia , Modelos Animais de Doenças , Ecocardiografia , Matriz Extracelular/metabolismo , Ácidos Graxos/metabolismo , Quinase 5 de Receptor Acoplado a Proteína G/metabolismo , Hipertrofia Ventricular Esquerda/diagnóstico , Hipertrofia Ventricular Esquerda/enzimologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Hipertrofia Ventricular Esquerda/prevenção & controle , Miocárdio/patologia , Tomografia por Emissão de Pósitrons , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Índice de Gravidade de Doença , Fatores de Tempo , Função Ventricular Esquerda/efeitos dos fármacos
19.
Life Sci ; 92(1): 26-34, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23142240

RESUMO

AIMS: Fenofibrate is a peroxisome proliferator-associated receptor alpha agonist (PPARα) used clinically for the management of dyslipidemia and is a myocardial fatty acid oxidation stimulator. It has also been shown to have cardiac anti-hypertrophic properties but the effects of fenofibrate on the development of eccentric LVH and ventricular function in chronic left ventricular (LV) volume overload (VO) are unknown. This study was therefore designed to explore the effects of fenofibrate treatment in a VO rat model caused by severe aortic valve regurgitation (AR) with a focus on cardiac remodeling and myocardial metabolism. MAIN METHODS: Male Wistar rats were divided in four groups (13-15 animals/group): Shams (S) treated with fenofibrate (F; 100 mg/kg/d PO) or not (C) and severe AR receiving or not fenofibrate. Treatment was started one week before surgery and the animals were sacrificed 9 weeks later. KEY FINDINGS: AR rats developed severe LVH (increased LV weight) during the course of the protocol. Fenofibrate did not reduce LV weight. However, eccentric LV remodeling was strongly reduced by fenofibrate in AR animals. Fractional shortening was significantly less affected in ARF compared to ARC group. Fenofibrate also increased the myocardial enzymatic activity of enzymes associated with fatty acid oxidation while inhibiting glycolytic enzyme phosphofructokinase. SIGNIFICANCE: Fenofibrate decreased LV eccentric remodeling associated with severe VO and helped maintain systolic function. Studies with a longer follow-up will be needed to assess the long-term effects of fenofibrate in chronic volume overload caused by aortic regurgitation.


Assuntos
Insuficiência da Valva Aórtica/tratamento farmacológico , Fenofibrato/farmacologia , Hipolipemiantes/farmacologia , Disfunção Ventricular Esquerda/tratamento farmacológico , Remodelação Ventricular/efeitos dos fármacos , Animais , Insuficiência da Valva Aórtica/complicações , Insuficiência da Valva Aórtica/fisiopatologia , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Masculino , Oxirredução/efeitos dos fármacos , Fosfofrutoquinases/antagonistas & inibidores , Ratos , Ratos Wistar , Índice de Gravidade de Doença , Fatores de Tempo , Disfunção Ventricular Esquerda/etiologia , Disfunção Ventricular Esquerda/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...