Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 14(6)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38546739

RESUMO

Structural rearrangements, such as inversions, translocations, duplications, and large insertions and deletions, are large-scale genomic variants that can play an important role in shaping phenotypic variation and in genome adaptation and evolution. We used chromosomal-level assemblies from eight Fusarium graminearum isolates to study structural variants and their role in fungal evolution. We generated the assemblies of four of these genomes after Oxford Nanopore sequencing. A total of 87 inversions, 159 translocations, 245 duplications, 58,489 insertions, and 34,102 deletions were detected. Regions of high recombination rate are associated with structural rearrangements, and a significant proportion of inversions, translocations, and duplications overlap with the repeat content of the genome, suggesting recombination and repeat elements are major factors in the origin of structural rearrangements in F. graminearum. Large insertions and deletions introduce presence-absence polymorphisms for many genes, including secondary metabolite biosynthesis cluster genes and predicted effectors genes. Translocation events were found to be shuffling predicted effector-rich regions of the genomes and are likely contributing to the gain and loss of effectors facilitated by recombination. Breakpoints of some structural rearrangements fall within coding sequences and are likely altering the protein products. Structural rearrangements in F. graminearum thus have an important role to play in shaping pathogen-host interactions and broader evolution through genome reorganization, the introduction of presence-absence polymorphisms, and changing protein products and gene regulation.


Assuntos
Fusarium , Genoma Fúngico , Fusarium/genética , Variação Estrutural do Genoma , Evolução Molecular , Recombinação Genética , Genômica/métodos , Translocação Genética , Cromossomos Fúngicos/genética , Variação Genética
2.
Microorganisms ; 7(10)2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31623235

RESUMO

Bacterial leaf spot of tomato and pepper (BLS), an economically important bacterial disease caused by four species of Xanthomonas (X. euvesicatoria (Xe), X. vesicatoria (Xv), X. gardneri (Xg), and X. perforans (Xp)), is a global problem and can cause over 50% crop loss under unfavorable conditions. Among the four species, Xe and Xv are prevalent worldwide. Characterization of the pathogens is crucial for disease management and regulatory purposes. In this study, we performed a multilocus sequence analysis (MLSA) with six genes (hrcN, dnaA gyrB, gapA, pdg, and hmbs) on BLS strains. Other Xanthomonas species were included to determine phylogenetic relationships within and among the tested strains. Four BLS species comprising 76 strains from different serological groups and diverse geographical locations were resolved into three major clades. BLS xanthomonads formed distinct clusters in the phylogenetic analyses. Three other xanthomonads, including X. albilineans, X. sacchari, and X. translucens pv. undolusa revealed less than 85%, 88%, and 89% average nucleotide identity (ANI), respectively, with the other species of Xanthomonas included in this study. Both antibody and MLSA data showed that Xv was clearly separated from Xe and that the latter strains were remarkably clonal, even though they originated from distant geographical locations. The Xe strains formed two separate phylogenetic groups; Xe group A1 consisted only of tomato strains, whereas Xe group A2 included strains from pepper and tomato. In contrast, the Xv group showed greater heterogeneity. Some Xv strains from South America were closely related to strains from California, while others grouped closer to a strain from Indiana and more distantly to a strain from Hawaii. Using this information molecular tests can now be devised to track distribution of clonal populations that may be introduced into new geographic areas through seeds and other infected plant materials.

3.
PLoS One ; 14(6): e0218868, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31233546

RESUMO

Destructive maceration, a wide host range, and longevity in non-plant substrates has established Dickeya dianthicola (blackleg of potato) as a significant threat to potato industries worldwide. To protect these businesses, a specific and sensitive point-of-care D. dianthicola detection tool is necessary. We have developed a loop-mediated isothermal amplification (LAMP) assay for specific, sensitive, and rapid detection of D. dianthicola, which can be streamlined for point-of-care use. The developed LAMP assay targets a unique gene, alcohol dehydrogenase, of D. dianthicola. Assay specificity was assessed using strains present in inclusivity (16 D. dianthicola strains) and exclusivity panels (56 closely related, potato pathogenic, and other bacterial strains). Amplification with strains of inclusivity panel occurred, and cross-reactivity with non-target DNA was not observed. The limit of detection (LOD) was 10 CFU/ml when dilutions were made before isolating the genomic DNA; however, LOD was determined as 1 pg using 10-fold serially diluted D. dianthicola genomic DNA. Similar LOD of 1 pg was observed when serially diluted target genomic DNA was mixed with host genomic DNA. LOD (1 pg) was also calculated with 10-fold serially diluted synthetic DNA fragments containing primer target sites. Naturally and artificially inoculated plant samples were used for field adaptability tests with the field-deployable Optigene Plant Material Lysis Kit and a heat block (65°C); the results were obtained within 20 minutes. Despite the lack of method precision, no false positives or false negatives were observed. Therefore, with prepared reactions and a steady heat source, this assay can be used for rapid point-of-care detection, which is imperative for quarantine, eradication, disease management, and border protection.


Assuntos
Álcool Desidrogenase/genética , Gammaproteobacteria/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Solanum tuberosum/microbiologia , Dickeya , Gammaproteobacteria/isolamento & purificação , Limite de Detecção , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Sensibilidade e Especificidade , Fatores de Tempo
4.
Sci Rep ; 8(1): 14298, 2018 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-30250161

RESUMO

Bacterial spot (BS), caused by Xanthomonas euvesicatoria, X. vesicatoria, X. gardneri and X. perforans, is an economically important bacterial disease of tomato and pepper. Symptoms produced by all four species are nearly indistinguishable. At present, no point-of-care diagnostics exist for BS. In this research, we examined genomes of X. euvesicatoria, X. vesicatoria, X. gardneri, X. perforans and other species of Xanthomonas; the unique gene recG was chosen to design primers to develop a loop-mediated isothermal amplification (LAMP) assay to rapidly and accurately identify and differentiate X. euvesicatoria from other BS causing Xanthomonas sp. using a field-deployable portable BioRangerTM instrument. Specificity of the developed assay was tested against 39 strains of X. euvesicatoria and 41 strains of other species in inclusivity and exclusivity panels, respectively. The assay detection limit was 100 fg (~18 genome copies) of genomic DNA and 1,000 fg in samples spiked with tomato DNA. The assay unambiguously detected X. euvesicatoria in infected tomato plant samples. Concordant results were obtained when multiple operators performed the test independently. No false positives and false negatives were detected. The developed LAMP assay has numerous applications in diagnostics, biosecurity and disease management.


Assuntos
Genoma Bacteriano , Técnicas de Amplificação de Ácido Nucleico/métodos , Xanthomonas/genética , Xanthomonas/isolamento & purificação , Simulação por Computador , Primers do DNA/genética , Variação Genética , Solanum lycopersicum/microbiologia , Filogenia , Doenças das Plantas/microbiologia , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...