Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(4): e25113, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38370188

RESUMO

The impact of integrated nutrient management seems crucial for the sustainability of crop production as revealed by studies on long-term experiments. It provided the opportunity to monitor long-term variations in crop yields and associated factors. The impacts of various nutrient management strategies on yields and soil attributes in a rice-wheat system have been researched under a long-term experiment that has been running since 1983 at Punjab Agricultural University, Ludhiana. Further, a positive correlation has been observed between crop yields and soil properties such as soil organic carbon (SOC), nitrogen (N), phosphorus (P), potassium (K) and zinc (Zn). The negative correlation with K could be attributed to soil becoming deficient in K and necessitating the application of potassium fertilizer. The treatments receiving organic manures (green manure, farmyard manure and wheat cut straw) showed a better population of soil microorganisms in comparison to the treatments receiving chemical fertilizers, thereby proving as precursors of sustaining soil health. The best soil characteristics (water-soluble aggregates, exchangeable and non-exchangeable K, fixed and total K) after rice and wheat harvesting were found where 50 % of the recommended NPK was supplemented with farmyard manure (FYM). The build-up of trace elements particularly for Fe and Zn was also noticed. In crystalline Fe oxide bound fraction (CFeOX), Fe increased between 717.1 and 984.8 mg kg-1, while Zn increased between 2.64 and 3.08 mg kg-1. Furthermore, amorphous iron oxide (AFeOX), CFeOX, carbonate (CARB), organic matter (OM) bound and exchangeable (EXCH) Fe and Zn were higher in treatments where organic manures were supplemented with 50 and 25 % N. Farmyard manure showed an incremental trend, followed by wheat cut straw and green manure (GM). The incremental trend in soil quality was noticed with FYM followed by wheat cut straw and GM.

2.
PLoS One ; 18(11): e0292602, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37943812

RESUMO

The use of chemical fertilizers under a rice-wheat cropping system (RWCS) has led to the emergence of micronutrient deficiency and decreased crop productivity. Thus, the experiment was conducted with the aim that the use of organic amendments would sustain productivity and improve the soil nutrient status under RWCS. A three-year experiment was conducted with different organic manures i.e. no manure (M0), farmyard manure @ 15 t ha-1 (M1), poultry manure @ 6 t ha-1(M2), press mud @ 15 t ha-1(M3), rice straw compost @ 6 t ha-1(M4) along with different levels of the recommended dose of fertilizer (RDF) i.e. 0% (F1), 75% (F2 and 100% (F3 in a split-plot design with three replications and plot size of 6 m x 1.2 m. Laboratory-based analysis of different soil as well as plant parameters was done using standard methodologies. The use of manures considerably improved the crop yield, macronutrients viz. nitrogen, phosphorus, potassium and micronutrients such as zinc, iron, manganese and copper, uptake in both the crops because of nutrient release from decomposed organic matter. Additionally, the increase in fertilizer dose increased these parameters. The system productivity was maximum recorded under F3M1 (13,052 kg ha-1) and results were statistically identical with F3M2 and F3M3. The significant upsurge of macro and micro-nutrients in soil and its correlation with yield outcomes was also observed through the combined use of manures as well as fertilizers. This study concluded that the use of 100% RDF integrated with organic manures, particularly farmyard manure would be a beneficial resource for increased crop yield, soil nutrient status and system productivity in RWCS in different regions of India.


Assuntos
Oryza , Solo , Solo/química , Agricultura/métodos , Fertilizantes/análise , Triticum , Esterco , Nitrogênio/análise
3.
Front Plant Sci ; 14: 1163528, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37360703

RESUMO

Manganese (Mn) is an essential micronutrient in plants, and it is necessary for hydrolysis in photosystem II, chlorophyll biosynthesis, and also chloroplast breakdown. Limited Mn availability in light soil resulted in interveinal chlorosis, poor root development, and the development of fewer tillers, particularly staple cereals including wheat, while foliar Mn fertilizers were found efficient in improving crop yield as well as Mn use efficiency. In the above context, a study was conducted in consecutive two wheat growing seasons for screening of the most effective and economical Mn treatment for improving the yield and Mn uptake in wheat and to compare the relative effectiveness of MnCO3 against the recommended dose of MnSO4 for wheat. To fulfill the aims of the study, three manganese products, namely, 1) manganese carbonate MnCO3 (26% Mn w/w and 3.3% N w/w), 2) 0.5% MnSO4·H2O (30.5% Mn), and 3) Mn-EDTA solution (12% Mn), were used as experimental treatments. Treatments and their combinations were as follows: two levels of MnCO3 (26% Mn) @ 750 and 1,250 ml ha-1 were applied at the two stages (i.e., 25-30 and 35-40 days after sowing) of wheat, and three sprays each of 0.5% MnSO4 (30.5% Mn) and Mn-EDTA (12% Mn) solution were applied in other plots. The 2-year study showed that Mn application significantly increased the plant height, productive tillers plant-1, and 1,000 grain weight irrespective of fertilizer source. The results of MnSO4 for grain yield wheat as well as uptake of Mn were statistically at par with both levels (750 and 1,250 ml ha-1) of MnCO3 with two sprays at two stages of wheat. However, the application of Mn in the form of 0.5% MnSO4·H2O (30.5% Mn) was found more economical than MnCO3, while the mobilization efficiency index (1.56) was found maximum when Mn was applied in MnCO3 with two sprays (750 and 1,250 ml ha-1) in the two stages of wheat. Thus, the present study revealed that MnCO3 can be used as an alternative to MnSO4 to enhance the yield and Mn uptake of wheat.

4.
Sci Rep ; 13(1): 3506, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864063

RESUMO

Mungbean [Vigna radiata L. (Wilczek)] is considered as an extremely nutritious crop possessing a high level of micronutrients, but their low bioavailability in the crop leads to micronutrient malnutrition in humans. Therefore, the present study was conducted to investigate the potential of nutrients viz. boron (B), zinc (Zn) and iron (Fe) biofortification on productivity, nutrient concentration and uptake as well as the economics of mungbean cultivation. In the experiment, the various combinations of RDF with ZnSO4.7H2O (0.5%), FeSO4.7H2O (0.5%) and borax (0.1%) were applied to mungbean variety ML 2056. The combined foliar application of Zn, Fe and B was highly efficient in increasing the yield of grain as well as straw in mungbean exhibiting maximum values i.e. 944 kg ha-1 and 6133 kg ha-1, respectively. Similar results for B, Zn and Fe concentration in grain (27.3 mg kg-1, 35.7 mg kg-1 and 187.1 mg kg-1, respectively) and straw (21.1 mg kg-1, 18.6 mg kg-1 and 376.1 mg kg-1, respectively) of mungbean were observed. Also, uptake of Zn and Fe by grain (31.3 g ha-1 and 164.4 g ha-1, respectively), as well as straw (113.7 g ha-1 and 2295.0 g ha-1, respectively), was maximum for the above treatment. Whereas, the B uptake was found to enhance significantly through the combined application of B, Zn and Fe, where the values 24.0 g ha-1 and 128.7 g ha-1 corresponded to grain and straw, respectively. Thus, combined use of ZnSO4.7H2O (0.5%) + FeSO4.7H2O (0.5%) and borax (0.1%) significantly improved the yield outcomes, the concentration of B, Zn and Fe, uptake and economic returns of mungbean cultivation to alleviate the B, Zn and Fe deficiency.


Assuntos
Vigna , Humanos , Boro , Zinco , Ferro , Biofortificação , Grão Comestível , Micronutrientes
5.
Heliyon ; 9(2): e13591, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36865444

RESUMO

Micronutrients play a vital role in improving growth and performance of different crops. Management of soil micronutrients for better crop production needs sound understanding of their status and causes of variability. Therefore, in order to evaluate the changes in soil properties and micronutrient contents of soils, an experiment was conducted with soil samples from six soil depths i.e. 0-10, 10-20, 20-40,40-60, 60-80 and 80-100 cm of four prominent land-use systems viz. forest, horticulture, crop land and barren land. Amongst these, the maximum contents of OC (0.36%), clay (19.4%), DTPA-Zn (1.14 mg kg-1), Fe (11.78 mg kg-1), Mn (5.37 mg kg-1), Cu (0.85 mg kg-1) and Ni (1.44 mg kg_1) were observed in soils of forest land use system followed by horticulture, crop land and barren land, respectively. Also, soils of forest landpossessed 29.5, 21.3, 58.4, 51.8 and 44.0% higher DTPA-Zn, Fe, Mn, Cu and Ni as compared to crop land use system. Interactive influence of land use systems and soil depths on distribution of DTPA extractable micronutrients was found to be positive with maximum content at 0-10 cm depth of forest land use and lowest at 80-100 cm of barren land use system, respectively. Correlation analysis explicit positive and significant relationship of OC with DTPA Zn (r = 0.81), Fe (r = 0.79), Mn (r = 0.77), Cu (r = 0.84) andNi (r = 0.80), whereas the correlation results among DTPA micronutrients indicated the highest positivecorrelation of Ni with Cu (r = 0.95) and Mn (r = 0.93) followed by Fe with Zn (r = 0.93). Therefore, inclusion of forest and horticulture land use in crop lands or shift of land use from forest based to crop land resulted in renewal of degraded soil which could be beneficial for enhancing agricultural sustainability.

6.
Heliyon ; 9(3): e14514, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36967980

RESUMO

Integrated use of chemical fertilizers with organic manure is becoming a quite promising practice to maintain higher crop productivity and to manage soil health, which is otherwise deteriorated due to intensive cultivation and imbalanced fertilizer use. Thus, the present experiment was conducted for combined application of inorganic fertilizers and organic manures for higher yield and nutrient uptake in basmati rice as well as to restore soil health. The treatments applied in the present study involve T1: control, T2: Farmyard manure (15 t ha-1), T3: Poultry manure (6 t ha-1), T4: Press mud (15 t ha-1), T5: Rice straw compost (6 t ha-1), T6: Farmyard manure (15 t ha-1) + 50% N (recommended dose of nitrogen), T7: Poultry manure (6 t ha-1) + 50% N, T8: Press mud (15 t ha-1) + 50% N, T9: Rice straw compost (6 t ha-1) + 50% N, T10: 75% N, T11: Farmyard manure (15 t ha1) + 75% N, T12: Poultry manure (6 t ha-1) + 75% N, T13: Press mud (15 t ha-1) + 75% N, T14: Rice straw compost (6 t ha-1) + 75% N, T15: 100% N. The integrated use of organic manures and inorganic fertilizers significantly increased the grain and straw yield, macronutrients as well as micronutrients uptake in basmati due to the release of nutrients from decomposition of organic manures. Among different treatments, the addition of PM+75% N showed maximum grain yield, straw yield and sustainability yield index (44.53 q ha-1, 89.67 q ha-1 and 0.91 respectively) as well as the highest uptake of nitrogen (58.29 and 65.39 kg ha-1), phosphorus (25.04 and 23.24 kg ha-1) and potassium (15.26 and 118.95 kg ha-1) in grain and straw, respectively. Similar results were observed for zinc (Zn), copper (Cu), iron (Fe) and manganese (Mn) uptake under treatment involving PM+75% N with values 183.9, 26.18, 339.3 and 355.8 g ha-1 in grain and 205.3, 25.62, 2627.3 and 278 g ha-1 in straw, respectively. Additionally, correlation studies showed that the grain and straw yield of basmati exhibited a significantly positive correlation with soil P, Cu and Fe. The study suggested that the partial substitution of inorganic fertilizers with organic manures did not lower crop yield and nutrient uptake. Thus, integrated application of organic and inorganic fertilizers can be used for the sustainability of basmati-wheat system and to retain the soil fertility which is otherwise deteriorated with sole use of inorganic fertilizers.

7.
Environ Geochem Health ; 45(12): 8897-8909, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35484423

RESUMO

The study of soil cadmium (Cd) fractionation has become the need of the hour due to phytoextraction of Cd heavy metal by indigenous Brassica species of northwest India. The present study was conducted to explore the Cd speciation in soils treated with Cd (0, 5.0, 10.0, 20.0, 40.0, and 80.0 mg kg-1 soil) and synthetic chelate ethylene diamine tetraacetic acid (EDTA-0, 1.0 and 2.0 g kg-1 soil) planted under three Brassica species (Brassica juncea L., Brassica campestris L., and Brassica napus L). The studied Cd fractions viz. exchangeable and water-soluble (EX + WS), carbonate (CARB), organic matter (OM), Mn oxide (MnOX), amorphous Fe oxide (AFeOX), crystalline Fe oxide (CFeOX), and residual (RES) differed in their Cd content in soils under three investigated Brassica species. Among all plantations, B. juncea reduced the highest soil Cd content of EX + WS form which reflected its bioavailability. The Cd supplementation significantly enhanced the Cd concentration in all Cd forms with EX + WS Cd form exhibiting higher increase even at low Cd level (5.0 mg kg-1), whereas the EDTA addition did not influence Cd fractions. The application of EDTA @ 1.0 g kg-1 soil proved beneficial as it enhanced the metal mobility for plant extraction. All species positively significantly correlated (r = 0.648** to 0.747**) with all Cd fractions but except B. juncea all confronted reduction in their total biomass. In nutshell, it suggested that Brassica species having large plant biomass could be considered as a potential candidate for phytoremediation.


Assuntos
Cádmio , Poluentes do Solo , Ácido Edético , Cádmio/análise , Solo/química , Poluentes do Solo/análise , Mostardeira , Biodegradação Ambiental , Óxidos
8.
Front Plant Sci ; 13: 976391, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092426

RESUMO

Indian mustard (Brassica juncea L.) is an essential oilseed crop that offers important nutrients to human beings. However, the concurrent micronutrient deficiencies including boron (B), sulfur (S), and nitrogen (N) could pose a significant threat to public health. Therefore, this study was conducted at the Punjab Agricultural University, Ludhiana, with nine treatments, i.e., T1-Control (recommended NPK only), T2- borax (0.5%) at flowering, T3-borax (1.0%) at flowering,T4- borax (0.5%) + urea (1.0%) at flowering,T5-borax (1.0%) + urea (1.0%) at flowering, T6-borax (0.5%) at flowering + capsule formation, T7-borax (1.0%) at flowering + capsule formation, T8-borax (0.5%) + urea (1.0%) at flowering + capsule formation, T9-borax (1.0%) + urea (1.0%) at flowering + Capsule formation, replicated three times in a randomized block design for 2 years (2020-2021 and 2021-2022). The foliar application of borax (1.0%) + urea (1.0%) at the flowering and capsule formation stage (treatment T9) was highly efficient in increasing food quality parameters such as crude fiber, total soluble solids (TSS), and protein content with maximum values of 3.77, 24.9, and 27.53%, respectively. Also, maximum yields of seed as well as stover for treatment T9 were 1.376 and 6.625 kg ha-1, respectively. Similarly, the results for B, S, and N concentrations in seed (27.71 mg kg-1, 17.69 mg kg-1, and 2.35%), as well as stover (25.92 mg kg-1, 17.31 mg kg-1, and 0.33%), were maximum in treatment T9. Also, B, S, and N uptake by seed (38.18 g ha-1, 24.40 g ha-1, and 32.05 Kg ha-1) and stover (172.55 g ha-1, 115.44 g ha-1, and 21.99 Kg ha-1) were maximum for the treatment T9 involving borax (1.0%) + urea (1.0%) at the flowering and capsule formation stage. Whereas, the concentration and uptake decreased in the treatments involving the sole application of borax and urea. Therefore, the application of borax (1.0%) and urea (1.0%) at the flowering and capsule formation stage significantly improved the quality parameters, seed and stover yield, nutrient concentration, and uptake over control and could be used to alleviate the B, S, and N deficiency in Indian mustard.

9.
Molecules ; 27(11)2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35684558

RESUMO

Micronutrient deficiency is a major constraint for the growth, yield and nutritional quality of cowpea which results in nutritional disorders in humans. Micronutrients including molybdenum (Mo), iron (Fe) and zinc (Zn) play a pivotal role in crop nutrition, and their role in different metabolic processes in crops has been highlighted. In order to increase the nutritional quality of cowpea, a field experiment was conducted for two years in which the effect of Mo along with iron (Fe) and zinc (Zn) on productivity, nitrogen and micronutrient uptake, root length and the number of nodules in cowpea cultivation was investigated. It was found that the foliar application of Fe and Zn and their interaction with Mo application through seed priming as well as soil application displayed increased yield, nutrient concentration, uptake and growth parameters which helped to enhance the nutritional quality of cowpea for consumption by the human population. The results of the above experiments revealed that among all the treatments, the soil application of Mo combined with the foliar application of 0.5% each of FeSO4·7H2O and ZnSO4·7H2O (M2F3 treatment) enhanced the grain and stover yield of cowpea, exhibiting maximum values of 1402 and 6104.7 kg ha-1, respectively. Again, the M2F3 treatment resulted in higher Zn, Fe and Mo concentrations in the grain (17.07, 109.3 and 30.26 mg kg-1, respectively) and stover (17.99, 132.7 and 31.22 mg kg-1, respectively) of cowpea. Uptake of Zn, Fe and Mo by the grain (25.23, 153.3 and 42.46 g ha-1, respectively) as well as the stover (104.2, 809.9 and 190.6 g ha-1, respectively) was found to be maximum for the M2F3 treatment. The root length (30.5 cm), number of nodules per plant (73.0) and N uptake in grain and stover (55.39 and 46.15 kg ha-1) were also higher for this treatment. Overall, soil application of Mo along with the foliar application of FeSO4·7H2O (0.5%) and ZnSO4·7H2O (0.5%) significantly improved yield outcomes, concentration, uptake, root length, nodules plant-1 and N uptake of cowpea to alleviate the micronutrient deficiency.


Assuntos
Vigna , Zinco , Grão Comestível/química , Humanos , Ferro/metabolismo , Micronutrientes , Molibdênio/metabolismo , Solo , Triticum/metabolismo , Vigna/metabolismo , Zinco/metabolismo
10.
Chemosphere ; 302: 134842, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35525450

RESUMO

Phytoremediation acts as an efficient methodology for management of toxic elements spiked soils. The accumulation and tolerance potential of hyper-accumulator plants for toxic elements act as an index for in-situ removal of toxic elements. Extraction of cadmium (Cd) through its accumulation in harvestable parts of plants has attracted attention as the economic and environment friendly technique. Brassica genotypes have greater potential to accumulate Cd when grown in Cd spiked soils. Therefore, for evaluation of comparative efficiency of three Brassica genotypes (B. juncea, B. campestris and B. napus) in phytoremediation of Cd spiked soils, a pot study was carried out in Cd contaminated soil with 6 levels as 0, 5, 10, 20, 40, and 80 mg kg-1 soil. Results indicated that dry biomass production of Brassica genotypes declined with the enhanced Cd contamination in soil. The reduction in grain and shoot yield varied from 2.87 to 1.85 and 11.85 to 8.00 g pot-1 with increased Cd contamination from 5 to 80 mg kg-1 soil. Similarly, increased levels of Cd contamination resulted in enhanced concentration and accumulation in grains as well as shoots of all Brassica genotypes. Among Brassica genotypes, B. juncea recorded the highest production of dry biomass (12.8 g pot-1), Cd accumulation (736.0 µg pot-1). Also, the bioaccumulation coefficient and tolerance index indicated that B. juncea is the most tolerant genotype to Cd contamination in soil. Therefore, B. juncea could act as the most potential genotypes for decontamination of Cd spiked soils by preventing its entry into food chain.


Assuntos
Brassica , Poluentes do Solo , Biodegradação Ambiental , Brassica/genética , Cádmio/análise , Genótipo , Plantas , Areia , Solo , Poluentes do Solo/análise
11.
Molecules ; 27(4)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35209127

RESUMO

Globally, many developing countries are facing silent epidemics of nutritional deficiencies in human beings and animals. The lack of diversity in diet, i.e., cereal-based crops deficient in mineral nutrients is an additional threat to nutritional quality. The present review accounts for the significance of biofortification as a process to enhance the productivity of crops and also an agricultural solution to address the issues of nutritional security. In this endeavor, different innovative and specific biofortification approaches have been discussed for nutrient enrichment of field crops including cereals, pulses, oilseeds and fodder crops. The agronomic approach increases the micronutrient density in crops with soil and foliar application of fertilizers including amendments. The biofortification through conventional breeding approach includes the selection of efficient genotypes, practicing crossing of plants with desirable nutritional traits without sacrificing agricultural and economic productivity. However, the transgenic/biotechnological approach involves the synthesis of transgenes for micronutrient re-translocation between tissues to enhance their bioavailability. Soil microorganisms enhance nutrient content in the rhizosphere through diverse mechanisms such as synthesis, mobilization, transformations and siderophore production which accumulate more minerals in plants. Different sources of micronutrients viz. mineral solutions, chelates and nanoparticles play a pivotal role in the process of biofortification as it regulates the absorption rates and mechanisms in plants. Apart from the quality parameters, biofortification also improved the crop yield to alleviate hidden hunger thus proving to be a sustainable and cost-effective approach. Thus, this review article conveys a message for researchers about the adequate potential of biofortification to increase crop productivity and nourish the crop with additional nutrient content to provide food security and nutritional quality to humans and livestock.


Assuntos
Biofortificação/métodos , Produtos Agrícolas/química , Micronutrientes/análise , Fatores Etários , Agricultura , Animais , Biotecnologia , Fertilizantes , Segurança Alimentar , Alimentos Fortificados , Saúde Global , Química Verde , Humanos , Desnutrição/epidemiologia , Desnutrição/etiologia , Minerais/análise , Minerais/química , Nanotecnologia , Valor Nutritivo , Melhoramento Vegetal , Solo/química
12.
Carbohydr Polym ; 282: 119107, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35123743

RESUMO

In this study, spray drying mechanism was used to optimize the nanoencapsulation of iron and zinc using potato starch at constant proportion and variable maltodextrin and core material to keep the total solids of spray drier feed solution at 10, 20, 30 and 40% levels. Results exhibited that stable nanoencapsulates of iron and zinc were formed at 30% level with maximum in-vitro bioavailability and encapsulation efficiency of 90.68 and 89.36%, respectively. At this level the particle size and zeta potential of iron and zinc nanoencapsulates were 340.9 and 354.5 nm; 0.372 and 11.40 mV, respectively. Further, FTIR and XRD analysis of Fe 30 and Zn 30 nanoencapsulates exhibited that core material was successfully encapsulated by existence of functional groups and a semi-crystalline structure, respectively. Thus, study suggests the suitability of cheap carriers like potato starch and maltodextrin in successful encapsulation of iron and zinc indicating application potentiality in food fortification.

13.
Environ Sci Pollut Res Int ; 29(4): 6000-6009, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34431059

RESUMO

Cadmium (Cd) metal extraction through efficient plant roots has attracted much attention as this methodology is environment-friendly and cost-effective. Brassica species are well known for their tolerance towards high Cd concentration in contaminated soils. The tolerance ability may vary among species; hence the assessment of this variability is mandatory for selecting Brassica species. For this purpose, a greenhouse pot experiment was carried out using three Brassica species (Brassica juncea L., Brassica campestris L., and Brassica napus L.). To evaluate the effect of chelating agent ethylenediamine tetraacetic acid (EDTA) on Cd uptake, EDTA (0, 1, and 2 g kg-1 soil) was supplemented along with Cd (0, 5, 10, 20, 40, and 80 mg kg-1 soil). Among different species, B. juncea possessed the highest root dry biomass and lowest root Cd concentration in untreated soil. Overall root dry biomass of all tested Brassica species reduced on increasing Cd and EDTA levels. The trend was appeared to be related to an increase in root Cd concentration on the supplementation of EDTA that formed a complex with the target metal contaminate and resulted in vacuolar sequestration. Roots of B. juncea showed maximum Cd accumulation and highest values at Cd and EDTA levels up to 20 mg kg-1 and 1 g kg-1 soil due to the combined effect of root biomass and Cd concentration in roots. Thus, present findings inferred that Cd and EDTA supplementation might prove as a feasible strategy to improve remediation of Cd-polluted soil using B. juncea as an efficient Cd accumulator.


Assuntos
Cádmio , Poluentes do Solo , Biodegradação Ambiental , Cádmio/análise , Suplementos Nutricionais , Ácido Edético , Mostardeira , Raízes de Plantas/química , Solo , Poluentes do Solo/análise
14.
Molecules ; 26(24)2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34946758

RESUMO

Biofortification of pulse crops with Zn and Fe is a viable approach to combat their widespread deficiencies in humans. Lentil (Lens culinaris Medik.) is a widely consumed edible crop possessing a high level of Zn and Fe micronutrients. Thus, the present study was conducted to examine the influence of foliar application of Zn and Fe on productivity, concentration, uptake and the economics of lentil cultivation (LL 931). For this, different treatment combinations of ZnSO4·7H2O (0.5%) and FeSO4·7H2O (0.5%), along with the recommended dose of fertilizer (RDF), were applied to the lentil. The results of study reported that the combined foliar application of ZnSO4·7H2O (0.5%) + FeSO4·7H2O (0.5%) at pre-flowering (S1) and pod formation (S2) stages was most effective in enhancing grain and straw yield, Zn and Fe concentration, and uptake. However, the outcome of this treatment was statistically on par with the results obtained under the treatment ZnSO4·7H2O (0.5%) + FeSO4·7H2O (0.5%) at S1 stage. A single spray of ZnSO4·7H2O (0.5%) + FeSO4·7H2O (0.5%) at S1 stage enhanced the grain and straw yield up to 39.6% and 51.8%, respectively. Similarly, Zn and Fe concentrations showed enhancement in grain (10.9% and 20.4%, respectively) and straw (27.5% and 27.6% respectively) of the lentil. The increase in Zn and Fe uptake by grain was 54.8% and 68.0%, respectively, whereas uptake by straw was 93.6% and 93.7%, respectively. Also the benefit:cost was the highest (1.96) with application of ZnSO4·7H2O (0.5%) + FeSO4·7H2O (0.5%) at S1 stage. Conclusively, the combined use of ZnSO4·7H2O (0.5%) + FeSO4·7H2O (0.5%) at S1 stage can contribute significantly towards yield, Zn and Fe concentration, as well as uptake and the economic returns of lentil to remediate the Zn and Fe deficiency.


Assuntos
Grão Comestível/efeitos dos fármacos , Compostos Ferrosos/farmacologia , Fertilizantes/análise , Lens (Planta)/efeitos dos fármacos , Micronutrientes/farmacologia , Sulfato de Zinco/farmacologia , Biofortificação , Grão Comestível/metabolismo , Compostos Ferrosos/química , Compostos Ferrosos/metabolismo , Lens (Planta)/metabolismo , Micronutrientes/química , Micronutrientes/metabolismo , Sulfato de Zinco/química , Sulfato de Zinco/metabolismo
15.
Plants (Basel) ; 10(11)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34834794

RESUMO

The escalating scarcity of irrigation water, transplantation of rice on light-textured soils and labour cost acted as major drivers for the transition towards direct-seeded rice (DSR) cultivation from the conventionally flooded transplanting system. Despite these advantages, DSR is a challenge in light texture soil due to heavy weed infestation and a slight decline in crop yield. The weeds compete for nutrients and have an adverse effect on the growth and yield of crops. Hence, to assess the removal of macro and micronutrients by weeds and direct-seeded rice, a field experiment was carried out on sandy loam soil for two consecutive Kharif seasons (2018 and 2019). Three treatments from rice, namely: DSR under zero tillage (DSR-ZT), DSR under conventional tillage (DSR-CT) and DSR under reduced tillage (DSR-RT) were taken as main plots with three tillage treatments in wheat, namely: Conventional tillage without rice straw (CTW-R), Zero tillage without rice straw (ZTW-R) and Zero tillage with straw as mulch using Happy Seeder (ZTW+R) as subplots, replicated thrice. Among the rice establishment methods, DSR-RT showed an edge in terms of rice grain and straw yield (6.18 and 8.14 Mg ha-1, respectively) as well as macro- and micronutrient uptake by rice. Under management practices, ZTW+R proved as an efficient strategy in terms of yield and nutrient uptake by crops. The contribution of weeds towards biomass production was maximum under the ZTW-R (9.44%) treatment followed by DSR-ZT (7.72%). The nutrient budgeting showed that macro- and micronutrient removal by weeds was minimum under reduced tillage (24.51 and 50.35%, respectively), whereas it was 21.88 and 44.87% when wheat was grown under conventional tillage without rice straw. In overall, the research study concluded that weeds on an average remove 25.65 % macronutrients (N, P, K) and 51.47% of micronutrients (Zn, Cu, Fe and Mn) in DSR under rice-wheat cropping system.

16.
Molecules ; 26(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34771108

RESUMO

To achieve the nutritional target of human food, boron (B) has been described as an essential mineral in determining seed and theoretical oil yield of Sesamum indicum L. The research to increase its cultivation is garnering attention due to its high oil content, quality and its utilization for various purposes, which include human nutrition as well as its use in the food industry. For this, a two-year field experiment was performed at PAU, Punjab, India to determine the effect of different concentrations of foliar-applied B (20, 30 and 40 mg L-1) and different growth stages of crop, i.e., we measured the effects on agroeconomic indicators and certain quality parameters of sesame using different concentrations of B applied at the flowering and capsule formation stages as compared to using water spray and untreated plants. Water spray did not significantly affect the studied parameters. However, B application significantly increased the yield, uptake, antioxidant activity (AOA) and theoretical oil content (TOC) compared to those of untreated plants. The maximum increase in seed yield (26.75%), B seed and stover uptake (64.08% and 69.25%, respectively) as well as highest AOA (69.41%) and benefit to cost ratio (B:C ratio 2.63) was recorded when B was applied at 30 mg L-1 at the flowering and capsule formation stages. However, the maximum sesame yield and B uptake were recorded when B was applied at a rate of 30 mg L-1. A significant increase in TOC was also recorded with a B application rate of 30 mg L-1. For efficiency indices, the higher values of boron agronomic efficiency (BAE) and boron crop recovery efficiency (BCRE) were recorded when B was applied at 20 mg L-1 (5.25 and 30.56, respectively) and 30 mg L-1 (4.96 and 26.11, respectively) at the flowering and capsule formation stages. In conclusion, application of B @ 30 mg L-1 at the flowering and capsule formation stages seemed a viable technique to enhance yield, B uptake and economic returns of sesame.


Assuntos
Agricultura/economia , Boro/metabolismo , Desenvolvimento Vegetal , Sesamum/crescimento & desenvolvimento , Sesamum/metabolismo , Algoritmos , Fenômenos Químicos , Minerais , Modelos Econômicos , Modelos Teóricos , Óleo de Gergelim/análise , Óleo de Gergelim/química
17.
Heliyon ; 7(10): e08122, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34660932

RESUMO

It is imperative to understand the pollution of potentially toxic elements (PTEs) in different soils in order to determine the sustainable management approaches for soils. Potentially toxic elements (Fe, Mn, As, Pb, Zn, Ni, Cu, Cr, Co and Cd) were determined in agricultural, non-agricultural and industrial soils of Punjab, India. The concentration of PTEs at industrial soils were highest followed by non-agricultural and agricultural soils. The percentage change recorded from agricultural to non-agricultural soils for PTEs were 3.19% for Fe, 25.3% for Mn, 63.8% for Cu, 13.5% for Cr, 49.8% for Pb, 79.6% for Ni, 35.8% for Co and 32% for Cd. From non-agricultural to industrial soils, the percentage change observed for PTEs were 89% for Zn, 2.03% for Fe, 21.9% for Mn, 68.2% Cu, 9.2% for Cr, 35.8% for Pb, 18.4% for Co, 30.4% for Cd and 43.4% for As. The results of contamination factor, enrichment factor, geo-accumulation index, pollution and modified pollution indices also resulted severe contamination of Cd and As in all soil types. Ecological risk assessment results revealed that Cd exhibited very high risk in different soil types. The outcomes of this study will aid in forming approaches to decline the perils allied with PTEs in soils, and produce guidelines to save the environment from long term accrual of PTEs.

18.
Environ Monit Assess ; 193(10): 639, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34505936

RESUMO

Lower Shiwalik foothill ranges (Kandi regions) are dominated by different land use systems, varying in fertility status due to soil erosion owing to undulating topographical features. For assessment of soil nutrient status of study area, the soil sampling was conducted to investigate the variation in micronutrient status and physicochemical characteristics of soil. Long-range basis soil sampling was carried out in 11 blocks falling in the entire Shiwalik ranges of lower Himalaya under different land use systems (LUSs), viz., agriculture (AG), horticulture (HR), agri-horticulture (AH), grassland (GL), and agroforestry (AF) systems. A total of 440 soil samples were collected from two depths (0-15, 15-30 cm) for analysis. The results had reported that the soils were slightly acidic to slightly alkaline (6.61 to 8.10) in the whole range. Soil organic carbon (SOC) was found to be varying from very low to very high (2.43 to 10.43 g kg-1). DTPA-extractable Fe and Mn were found to be in dominant concentrations in the soils whereas, the deficiency of Zn was found under all existing land uses. Interestingly, Fe (r = 0.62*), Cu (r = 0.44), and Mn (r = 0.35) micronutrients were positively correlated with clay content whereas Zn (r = - 0.02) was negatively correlated. Soil quality based on principal component analysis (SQI-PCA) reported clay, SOC, and Zn are major dominating parameters to be considered of soil in Shiwalik ranges.


Assuntos
Carbono , Solo , Agricultura , Carbono/análise , Monitoramento Ambiental , Índia , Micronutrientes
19.
Bull Environ Contam Toxicol ; 106(6): 949-958, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33988727

RESUMO

Globally, heavy metal contamination of natural waterways and surrounding environments due to anthropogenic activities has become a grave cause of concern. Therefore, the present study was conducted to analyze the ecological risk posed by heavy metals in sediment samples (N = 24) collected from different depths of Budha Nalah drain located in Ludhiana (Punjab, India). The concentration of As, Cd, Cr, Cu, Ni, Pb and Zn were found to be above the maximum permissible limits for metals in soils and sediments, which was attributed to anthropogenic activities (industrialization, urbanization and agriculture). The values observed for Contamination Factor, Enrichment Factor and Pollution Load Index revealed that sediment samples were highly contaminated by As, Cd, Cr and Pb. The ecological Risk Index (range: 212-1566) and Modified Risk Index (range: 2793-12,182) values indicated that high concentrations of metals (especially As, Cd, Cr and Pb) posed severe ecological risks in the areas around the drain.


Assuntos
Metais Pesados , Poluentes Químicos da Água , China , Monitoramento Ambiental , Sedimentos Geológicos , Índia , Metais Pesados/análise , Medição de Risco , Poluentes Químicos da Água/análise
20.
Chemosphere ; 263: 128321, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297254

RESUMO

We assessed the phytoavailability of heavy metals in wheat and rice grown on soils along flood plains of Sutlej river (India) and its effects on human health. Surface soil samples along with wheat (pre-monsoon season) and rice (post-monsoon season) grain samples were collected during the years 2017 and 2018. Soil samples were analysed for total and DTPA-extractable metals and, wheat and rice grains samples for total metals. There were no significant (p < 0.05) changes in total metal concentration during both the years, but the concentration of DTPA-extractable metals was higher during pre-monsoon than post-monsoon season. The concentration of Pb, Cd, and Co in wheat grains, whereas the concentration of Cr, Co, Pb and Cd in rice grains surpassed their safe limits. Both DTPA-extractable metals (water soluble plus exchangeable) and non-exchangeable fractions explained more than 80% of the variations in metal uptake by plants. The bioaccumulation factor for DTPA-extractable metals (BCF) was above one, but Pollution Load Index for these metals (PLI) was less than one. The carcinogenic risks due to ingestion of wheat and rice grains were higher for Cd. The BAF, PLI and health risks were higher along transboundary of the river. These results suggest that exchangeable and non-exchangeable fractions are contributing towards metals uptake by wheat and rice along flood plain soils of the Sutlej river and the present study may act as a model for carrying out similar studies to find out the risks of heavy metals and it effect on human health in future.


Assuntos
Metais Pesados , Poluentes do Solo , China , Monitoramento Ambiental , Humanos , Índia , Metais Pesados/análise , Medição de Risco , Rios , Solo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...