Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Astrobiology ; 22(S1): S186-S216, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35653292

RESUMO

The Committee on Space Research (COSPAR) Sample Safety Assessment Framework (SSAF) has been developed by a COSPAR appointed Working Group. The objective of the sample safety assessment would be to evaluate whether samples returned from Mars could be harmful for Earth's systems (e.g., environment, biosphere, geochemical cycles). During the Working Group's deliberations, it became clear that a comprehensive assessment to predict the effects of introducing life in new environments or ecologies is difficult and practically impossible, even for terrestrial life and certainly more so for unknown extraterrestrial life. To manage expectations, the scope of the SSAF was adjusted to evaluate only whether the presence of martian life can be excluded in samples returned from Mars. If the presence of martian life cannot be excluded, a Hold & Critical Review must be established to evaluate the risk management measures and decide on the next steps. The SSAF starts from a positive hypothesis (there is martian life in the samples), which is complementary to the null-hypothesis (there is no martian life in the samples) typically used for science. Testing the positive hypothesis includes four elements: (1) Bayesian statistics, (2) subsampling strategy, (3) test sequence, and (4) decision criteria. The test sequence capability covers self-replicating and non-self-replicating biology and biologically active molecules. Most of the investigations associated with the SSAF would need to be carried out within biological containment. The SSAF is described in sufficient detail to support planning activities for a Sample Receiving Facility (SRF) and for preparing science announcements, while at the same time acknowledging that further work is required before a detailed Sample Safety Assessment Protocol (SSAP) can be developed. The three major open issues to be addressed to optimize and implement the SSAF are (1) setting a value for the level of assurance to effectively exclude the presence of martian life in the samples, (2) carrying out an analogue test program, and (3) acquiring relevant contamination knowledge from all Mars Sample Return (MSR) flight and ground elements. Although the SSAF was developed specifically for assessing samples from Mars in the context of the currently planned NASA-ESA MSR Campaign, this framework and the basic safety approach are applicable to any other Mars sample return mission concept, with minor adjustments in the execution part related to the specific nature of the samples to be returned. The SSAF is also considered a sound basis for other COSPAR Planetary Protection Category V, restricted Earth return missions beyond Mars. It is anticipated that the SSAF will be subject to future review by the various MSR stakeholders.


Assuntos
Marte , Voo Espacial , Teorema de Bayes , Meio Ambiente Extraterreno , Pesquisa Espacial
2.
Sci Total Environ ; 807(Pt 1): 150536, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34628294

RESUMO

The coronavirus disease 2019 (COVID-19) has had a global impact that has been unevenly distributed among and even within countries. Multiple demographic and environmental factors have been associated with the risk of COVID-19 spread and fatality, including age, gender, ethnicity, poverty, and air quality among others. However, specific contributions of these factors are yet to be understood. Here, we attempted to explain the variability in infection, death, and fatality rates by understanding the contributions of a few selected factors. We compared the incidence of COVID-19 in New York State (NYS) counties during the first wave of infection and analyzed how different demographic and environmental variables associate with the variation observed across the counties. We observed that infection and death rates, two important COVID-19 metrics, to be highly correlated with both being highest in counties located near New York City, considered as one of the epicenters of the infection in the US. In contrast, disease fatality was found to be highest in a different set of counties despite registering a low infection rate. To investigate this apparent discrepancy, we divided the counties into three clusters based on COVID-19 infection, death, or fatality, and compared the differences in the demographic and environmental variables such as ethnicity, age, population density, poverty, temperature, and air quality in each of these clusters. Furthermore, a regression model built on this data reveals PM2.5 and distance from the epicenter are significant risk factors for infection, while disease fatality has a strong association with age and PM2.5. Our results demonstrate that for the NYS, demographic components distinctly associate with specific aspects of COVID-19 burden and also highlight the detrimental impact of poor air quality. These results could help design and direct location-specific control and mitigation strategies.


Assuntos
Poluição do Ar , COVID-19 , Humanos , Incidência , New York/epidemiologia , Cidade de Nova Iorque , SARS-CoV-2
3.
Proc Natl Acad Sci U S A ; 113(21): 5797-803, 2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-26699469

RESUMO

Ice nucleating particles (INPs) are vital for ice initiation in, and precipitation from, mixed-phase clouds. A source of INPs from oceans within sea spray aerosol (SSA) emissions has been suggested in previous studies but remained unconfirmed. Here, we show that INPs are emitted using real wave breaking in a laboratory flume to produce SSA. The number concentrations of INPs from laboratory-generated SSA, when normalized to typical total aerosol number concentrations in the marine boundary layer, agree well with measurements from diverse regions over the oceans. Data in the present study are also in accord with previously published INP measurements made over remote ocean regions. INP number concentrations active within liquid water droplets increase exponentially in number with a decrease in temperature below 0 °C, averaging an order of magnitude increase per 5 °C interval. The plausibility of a strong increase in SSA INP emissions in association with phytoplankton blooms is also shown in laboratory simulations. Nevertheless, INP number concentrations, or active site densities approximated using "dry" geometric SSA surface areas, are a few orders of magnitude lower than corresponding concentrations or site densities in the surface boundary layer over continental regions. These findings have important implications for cloud radiative forcing and precipitation within low-level and midlevel marine clouds unaffected by continental INP sources, such as may occur over the Southern Ocean.

4.
Isotopes Environ Health Stud ; 45(4): 303-20, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19670069

RESUMO

A sensitive laser spectrometer, named IRIS (water isotope ratio infrared spectrometer), was developed for the in situ detection of the isotopic composition of water vapour in the upper troposphere and the lower stratosphere. Isotope ratio measurements can be used to quantify troposphere-stratosphere exchange, and to study the water chemistry in the stratosphere. IRIS is based on the technique of optical feedback cavity-enhanced absorption spectroscopy. It uses a room temperature near-infrared laser, and does not require cryogenic cooling of laser or detectors. The instrument weighs 51 kg including its support structure. Airborne operation was demonstrated during three flights aboard the European M55-Geophysica stratospheric research aircraft, as part of the AMMA/SCOUT-03 (African Monsoon Multidisciplinary Analysis/Stratospheric Climate links with emphasis on the Upper Troposphere and lower stratosphere) campaign in Burkina Faso in August 2006. One-second averaged, vertical profiles of delta(2)H, delta(17)O and delta(18)O in the upper troposphere are shown, as are the delta(17)O-delta(18)O and delta(2)H-delta(18)O relations. The data are discussed with reference to a Rayleigh distillation model. As expected, there is no indication of non-mass-dependent fractionation (also known as mass-independent fractionation) in the troposphere. Furthermore, improvements to the thermal management system and a move to a (cryogen-free) longer-wavelength laser source are discussed, which together should result in approximately two orders of magnitude improvement of the sensitivity.


Assuntos
Atmosfera/química , Deutério/química , Espectrofotometria Infravermelho/métodos , Lasers , Isótopos de Oxigênio/química
5.
Rev Sci Instrum ; 78(10): 105103, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17979454

RESUMO

Design and analysis of a new low-noise, fast-response, high-sensitivity, compact electrometer are described. This electrometer are battery operated and capable of measuring currents down to the femtoampere level. The portable, high performance nature of the electrometer renders it applicable for deployment in compact instruments for applications such as aerosol particle counters. A parametric experimental study is conducted to determine the role of different components on the performance of the electrometer. Under an ideal configuration, the electrometer has a step-up response time of approximately 3 s. Experiments with the electrometer used for particle counting measurements suggest that the new electrometer has high accuracy and sensitivity in comparison to the Keithley 6514 electrometer. The response of the electrometer used in particle counting studies is consistent with that of an optical single particle counter used in comparison experiments. A damping component introduced to reduce possible spike currents in the electrometer is also seen to reduce noise and almost have no effect on response time. The electrometer response characteristics are presented in detail.


Assuntos
Fontes de Energia Elétrica , Eletrônica/instrumentação , Radiometria/instrumentação , Eletrônica/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Miniaturização , Doses de Radiação , Radiometria/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
6.
Environ Pollut ; 144(2): 384-92, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16563582

RESUMO

To effectively use a passive sampler for monitoring trace contaminants in the gas-phase, its sampling characteristics as a function of ambient wind conditions must be known. In this study two commonly used passive samplers were evaluated using computational fluid dynamics. Contaminant uptake by the polyurethane foam (PUF) was modeled using a species transport model. The external-internal flow interactions in the sampler were characterized, and the uptake rates of contaminant species were quantified. The simulations show that flow fields in the samplers have strong velocity gradients, and single-point velocity measurements do not capture flow interactions accurately. Sampling rates calculated for a PUF in freestream are in good agreement with sampling rates for PUFs in the passive samplers studied for the same average velocity over the PUF. The calculated sampling rates are in general agreement with those obtained experimentally by other researchers.


Assuntos
Poluentes Atmosféricos/análise , Simulação por Computador , Monitoramento Ambiental/instrumentação , Modelos Teóricos , Monitoramento Ambiental/métodos , Desenho de Equipamento , Poliuretanos , Reprodutibilidade dos Testes , Vento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...