Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 40(20): 10203-10219, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34192476

RESUMO

c-MYC is deregulated in triple negative breast cancer (TNBC) pointing to be a promising biomarker for breast cancer treatment. Precise level of MYC expression is important in the control of cellular growth and proliferation. Designing of c-MYC-targeted antidotes to restore its basal level of cellular expression holds an optimistic approach towards anti-cancer treatment. MYC transcription is dominantly controlled by Nuclear Hypersensitive Element III-1 (NHEIII1) upstream of the promoter region possessing G-Quadruplex silencer element (Pu-27). We have investigated the selective binding-interaction profile of a natural phytophenolic compound Curcumin with native MYC G-quadruplex by conducting an array of biophysical experiments and in silico based Molecular Docking and Molecular Dynamic (MDs) simulation studies. Curcumin possesses immense anti-cancerous properties. We have observed significantly increased stability of MYC-G Quadruplex and thermodynamic spontaneity of Curcumin-MYC GQ binding with negative ΔG value. Transcription of MYC is tightly regulated by a complex mechanism involving promoters, enhancers and multiple transcription factors. We have used Curcumin as a model drug to understand the innate mechanism of controlling deregulated MYC back to its basal expression level. We have checked MYC-expression at transcriptional and translational level and proceeded for Chromatin Immuno-Precipitation assay (ChIP) to study the occupancy level of SP1, Heterogeneous nuclear ribonucleoprotein K (hnRNPK), Nucleoside Diphosphate Kinase 2 (NM23-H2) and Nucleolin at NHEIII1 upon Curcumin treatment of MDA-MB-231 cells. We have concluded that Curcumin binding tends to drive the equilibrium towards stable G-quadruplex formation repressing MYC back to its threshold-level. On retrospection of the synergistic effect of upregulated c-MYC and BCL-2 in cancer, we have also reported a new pathway [MYC-E2F-1-BCL-2-axis] through which Curcumin trigger apoptosis in cancer cells.Communicated by Ramaswamy H. Sarma.


Assuntos
Neoplasias da Mama , Curcumina , Quadruplex G , Feminino , Humanos , Apoptose , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Curcumina/farmacologia , Genes myc , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/química , Proteínas Proto-Oncogênicas c-myc/metabolismo , Células MDA-MB-231
2.
Biochemistry ; 54(4): 1132-43, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25564154

RESUMO

Curcumin, derived from rhizomes of the Curcuma longa plant, is known to possess a wide range of medicinal properties. We have examined the interaction of curcumin with actin and determined their binding and thermodynamic parameters using isothermal titration calorimetry. Curcumin is weakly fluorescent in aqueous solution, and binding to actin enhances fluorescence several fold with a large blue shift in the emission maximum. Curcumin inhibits microfilament formation, which is similar to its role in inhibiting microtubule formation. We synthesized a series of stable curcumin analogues to examine their affinity for actin and their ability to inhibit actin self-assembly. Results show that curcumin is a ligand with two symmetrical halves, each of which possesses no activity individually. Oxazole, pyrazole, and acetyl derivatives are less effective than curcumin at inhibiting actin self-assembly, whereas a benzylidiene derivative is more effective. Cell biology studies suggest that disorganization of the actin network leads to destabilization of filaments in the presence of curcumin. Molecular docking reveals that curcumin binds close to the cytochalasin binding site of actin. Further molecular dynamics studies reveal a possible allosteric effect in which curcumin binding at the "barbed end" of actin is transmitted to the "pointed end", where conformational changes disrupt interactions with the adjacent actin monomer to interrupt filament formation. Finally, the recognition and binding of actin by curcumin is yet another example of its unique ability to target multiple receptors.


Assuntos
Actinas/química , Actinas/metabolismo , Curcumina/química , Curcumina/metabolismo , Animais , Células HeLa , Humanos , Polimerização , Estrutura Secundária de Proteína , Coelhos
3.
Biochemistry ; 52(42): 7449-60, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-24063255

RESUMO

Curcumin has shown promising therapeutic utilities for many diseases, including cancer; however, its clinical application is severely limited because of its poor stability under physiological conditions. Here we find that curcumin also loses its activity instantaneously in a reducing environment. Curcumin can exist in solution as a tautomeric mixture of keto and enol forms, and the enol form was found to be responsible for the rapid degradation of the compound. To increase the stability of curcumin, several analogues were synthesized in which the diketone moiety of curcumin was replaced by isoxazole (compound 2) and pyrazole (compound 3) groups. Isoxazole and pyrazole curcumins were found to be extremely stable at physiological pH, in addition to reducing atmosphere, and they can kill cancer cells under serum-depleted condition. Using molecular modeling, we found that both compounds 2 and 3 could dock to the same site of tubulin as the parent molecule, curcumin. Interestingly, compounds 2 and 3 also show better free radical scavenging activity than curcumin. Altogether, these results strongly suggest that compounds 2 and 3 could be good replacements for curcumin in future drug development.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Curcumina/análogos & derivados , Sequestradores de Radicais Livres/farmacologia , Isoxazóis/química , Cetonas/química , Pirazóis/química , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Apoptose/efeitos dos fármacos , Curcumina/farmacologia , Citometria de Fluxo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Modelos Químicos , Conformação Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo , Células Tumorais Cultivadas
4.
Biochemistry ; 51(36): 7138-48, 2012 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-22891709

RESUMO

Tubulin, an α,ß heterodimer, has four distinct ligand binding sites (for paclitaxel, peloruside/laulimalide, vinca, and colchicine). The site where colchicine binds is a promising drug target for arresting cell division and has been observed to accommodate compounds that are structurally diverse but possess comparable affinity. This investigation, using two such structurally different ligands as probes (one being colchicine itself and another, TN16), aims to provide insight into the origin of this diverse acceptability to provide a better perspective for the design of novel therapeutic molecules. Thermodynamic measurements reveal interesting interplay between entropy and enthalpy. Although both these parameters are favourable for TN16 binding (ΔH < 0, ΔS > 0), but the magnitude of entropy has the determining role for colchicine binding as its enthalpic component is destabilizing (ΔH > 0, ΔS > 0). Molecular dynamics simulation provides atomistic insight into the mechanism, pointing to the inherent flexibility of the binding pocket that can drastically change its shape depending on the ligand that it accepts. Simulation shows that in the complexed states both the ligands have freedom to move within the binding pocket; colchicine can switch its interactions like a "flying trapeze", whereas TN16 rocks like a "swing cradle", both benefiting entropically, although in two different ways. Additionally, the experimental results with respect to the role of solvation entropy correlate well with the computed difference in the hydration: water molecules associated with the ligands are released upon complexation. The complementary role of van der Waals packing versus flexibility controls the entropy-enthalpy modulations. This analysis provides lessons for the design of new ligands that should balance between the "better fit" and "flexibility"', instead of focusing only on the receptor-ligand interactions.


Assuntos
Simulação de Dinâmica Molecular , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Animais , Sítios de Ligação , Colchicina/química , Colchicina/metabolismo , Cabras , Ligantes , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Especificidade por Substrato , Termodinâmica , Moduladores de Tubulina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...