Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Sci ; 109(1): 633-639, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31758949

RESUMO

Polysorbates are used ubiquitously in protein therapeutic drugs to help minimize adsorption to surfaces and aggregation. It has been recognized that polysorbate can itself degrade and in turn result in loss of efficacy of therapeutic proteins. We studied the 2 main pathways of polysorbate 80 (PS80) degradation, enzymatic ester hydrolysis, and oxidation. Degraded polysorbates were quantified through mass spectrometry to identify the loss of individual components. Next Langmuir trough adsorption isotherms were used to characterize changes in the surface activity of the degraded polysorbates. PS80 degraded via hydrolysis results in slower surface adsorption rates, whereas the oxidized PS80 show increased surface activity. However, the critical micelle concentration remained unchanged. A monoclonal antibody was formulated with stock and degraded polysorbates to probe their ability to prevent aggregation. Hydrolyzed polysorbate resulted in a large increase in particle formation during shaking stress. Oxidized PS80 was still protective against aggregation for the monoclonal antibody. Monomer loss as measured by SEC was comparable in formulations without PS80 to those with esterase hydrolyzed PS80. Monomer loss for oxidized PS80 was similar to that of nondegraded PS80. Hydrolysis of PS80 resulted in free fatty acids which formed insoluble particles during mechanical agitation which stimulated protein aggregation.


Assuntos
Anticorpos Monoclonais/química , Polissorbatos/química , Tensoativos/química , Composição de Medicamentos , Estabilidade de Medicamentos , Hidrólise , Modelos Químicos , Oxirredução , Agregados Proteicos , Estabilidade Proteica , Proteólise , Estresse Mecânico
2.
Biochim Biophys Acta ; 1798(4): 801-28, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20026298

RESUMO

Lung surfactant (LS) is a mixture of lipids and proteins that line the alveolar air-liquid interface, lowering the interfacial tension to levels that make breathing possible. In acute respiratory distress syndrome (ARDS), inactivation of LS is believed to play an important role in the development and severity of the disease. This review examines the competitive adsorption of LS and surface-active contaminants, such as serum proteins, present in the alveolar fluids of ARDS patients, and how this competitive adsorption can cause normal amounts of otherwise normal LS to be ineffective in lowering the interfacial tension. LS and serum proteins compete for the air-water interface when both are present in solution either in the alveolar fluids or in a Langmuir trough. Equilibrium favors LS as it has the lower equilibrium surface pressure, but the smaller proteins are kinetically favored over multi-micron LS bilayer aggregates by faster diffusion. If albumin reaches the interface, it creates an energy barrier to subsequent LS adsorption that slows or prevents the adsorption of the necessary amounts of LS required to lower surface tension. This process can be understood in terms of classic colloid stability theory in which an energy barrier to diffusion stabilizes colloidal suspensions against aggregation. This analogy provides qualitative and quantitative predictions regarding the origin of surfactant inactivation. An important corollary is that any additive that promotes colloid coagulation, such as increased electrolyte concentration, multivalent ions, hydrophilic non-adsorbing polymers such as PEG, dextran, etc. added to LS, or polyelectrolytes such as chitosan, also promotes LS adsorption in the presence of serum proteins and helps reverse surfactant inactivation. The theory provides quantitative tools to determine the optimal concentration of these additives and suggests that multiple additives may have a synergistic effect. A variety of physical and chemical techniques including isotherms, fluorescence microscopy, electron microscopy and X-ray diffraction show that LS adsorption is enhanced by this mechanism without substantially altering the structure or properties of the LS monolayer.


Assuntos
Líquido da Lavagem Broncoalveolar/química , Coloides/química , Pneumopatias/metabolismo , Surfactantes Pulmonares/química , Adsorção , Algoritmos , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Humanos , Modelos Biológicos , Surfactantes Pulmonares/metabolismo , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...