Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 453: 139621, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38761728

RESUMO

Bael (Aegle marmelos) beverage was pasteurized using continuous-microwave (MW) and traditional thermal processing and the activity of native enzymes, pulp-hydrolyzing enzymes, bioactive, physicochemical, and sensory properties were analyzed. First-order and linear biphasic models fitted well (R2 ≥ 0.90) for enzyme inactivation and bioactive alteration kinetics, respectively. For the most resistant enzyme, polyphenoloxidase (PPO), the inactivation target of ≥ 90 % was achieved at 90 °C TMW (final temperature under MW) and 95 °C for 5 min (conventional thermal). MW treatment displayed faster enzyme inactivation and better retention of TPC and AOC. MW treatment at 90 °C TMW showed 5.3 min D-value, 90% total carotenoid content, 3.42 crisp sensory score (out of 5), and no or minor change in physicochemical attributes. Thermal and MW treatment caused the loss of 14 and 10 bioactive compounds, respectively. The secondary and tertiary structural modifications of PPO enzyme-protein revealed MW's lethality primarily due to its thermal effects.

2.
Compr Rev Food Sci Food Saf ; 21(1): 499-540, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34766715

RESUMO

Pulsed light (PL) is a polychromatic radiation-based technology, among many other non-thermal processing techniques. The microbiological lethality of the PL technique has been explored in different food matrices along with their associated mechanisms. Pasteurization of fruit juice requires a 5-log cycle reduction in the resistant pathogen in the product. The manufacturers look toward achieving the microbial safety and stability of the juice, while consumers demand high-quality juice. Enzymatic spoilage in fruit juice is also a crucial factor that needs attention. The retailers want the processed juice to be stable, which can be achieved by inactivating the spoilage enzymes and native microflora inside it. The present review argued about the potential of PL technology to produce a microbiologically safe and enzymatically stable fruit juice with a minimal loss in bioactive compounds in the product. Concise information of factors affecting the PL treatment (PLT), primary inactivation mechanism associated with microorganisms, enzymes, the effect of PLT on various quality attributes (microorganisms, spoilage enzymes, bioactive components, sensory properties, color), and shelf life of fruit juices has been put forward. The potential of PL integrated with other non-thermal and mild thermal technologies on the microbial safety and stability of fruit juices has been corroborated. The review also provides suggestions to the readers for designing, modeling, and optimizing the PLT and discusses the use of various primary, secondary kinetic models in detail that have been utilized for different quality parameters in juices. Finally, the challenges and future need associated with PL technology has been summarized.


Assuntos
Sucos de Frutas e Vegetais , Pasteurização , Manipulação de Alimentos/métodos , Pasteurização/métodos
3.
J Food Sci ; 86(2): 463-474, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33438202

RESUMO

The study aims to formulate a mixed fruit beverage through sensory analysis, and the composition was optimized using a fuzzy logic algorithm. The fuzzy optimization algorithm was developed using a modified Takagi and Sugeno's approach, polynomial mixture modeling, and nonlinear solver engine. The optimized blend consisted of amla juice, pineapple juice, and coconut water in 14.3, 63.0, and 22.7%, respectively. Further, the batch thermal treatment was carried out within 50 to 95 °C for an isothermal holding time of 1 s to 10 min, and pasteurization condition for the beverage was estimated from kinetic modeling. The concept of thermal pulse inactivation due to non-isothermal heat-up-time and cool-down-time has been introduced within the process time calculation. From the kinetic study, polyphenoloxidase enzyme appeared to be the most resistant entity towards inactivation among all the natural microbiota and quality deteriorating enzymes. Pasteurization in terms of achieving a 5D reduction of both aerobic mesophilic and yeast-mold counts was attained over a range of 80 to 95 °C for 10.2 + 1.4 to 3.1 + 2.0 min (1.4 and 2.0 min = heat-up-time + cool-down-time), respectively. The 90% inactivation of both polyphenoloxidase and peroxidase enzymes was obtained over a range of 90 to 95 °C for 12.8 + 1.7 to 8.4 + 2.0 min, respectively. While obtaining both the microbial and enzyme stability at the isothermal condition of 95 °C for 8.4 min, the corresponding retention in ascorbic acid, total phenolics, and antioxidant capacity were observed as 49.7, 63.0, and 61.4%, respectively. PRACTICAL APPLICATION: In this work, the formulation of a fruit blend was optimized through an intelligent optimization technique (fuzzy algorithm) applied to the sensory data set. The approach for calculating thermal processing time or pasteurization condition provides a new dimension with better precision. The thermal treatment condition of 95 °C for 10 min can be used for this mixed beverage to achieve both microbial stability (5-log reduction) and enzyme stability (90% reduction). The presented study can be used as a reference for other similar beverages to achieve a complete process design from basic formulation optimization to thermal (batch-type) processing conditions.


Assuntos
Manipulação de Alimentos/métodos , Sucos de Frutas e Vegetais/análise , Lógica Fuzzy , Pasteurização/métodos , Ananas , Antioxidantes/análise , Ácido Ascórbico , Cocos , Frutas/química , Temperatura Alta , Phyllanthus emblica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...