Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
ScientificWorldJournal ; 2023: 1335201, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37051183

RESUMO

The tissue-specific protein eEF1A2 has been linked to the development of neurological disorders. The role of eEF1A2 in the pathogenesis of Parkinson's disease (PD) has yet to be investigated. The aim of this study was to determine the potential neuroprotective effects of eEF1A2 in an MPP+ model of PD. Differentiated SH-SY5Y cells were transfected with eEF1A2 siRNA, followed by MPP+ exposure. The expression of p-Akt1 and p-mTORC1 was determined using Western blotting. The expression of p53, Bax, Bcl-2, and caspase-3 was evaluated using qRT-PCR. Cleaved caspase-3 levels and Annexin V/propidium iodide flow cytometry were used to determine apoptosis. The effects of PI3K inhibition were examined. The results showed that eEF1A2 siRNA significantly reduced the eEF1A2 expression induced by MPP+. MPP+ treatment activated Akt1 and mTORC1; however, eEF1A2 knockdown suppressed this activation. In eEF1A2-knockdown cells, MPP+ treatment increased the expression of p53 and caspase-3 mRNA levels as well as increased apoptotic cell death when compared to MPP+ treatment alone. In cells exposed to MPP+, upstream inhibition of the Akt/mTOR pathway, by either LY294002 or wortmannin, inhibited the phosphorylation of Akt1 and mTORC1. Both PI3K inhibitors increased eEF1A2 expression in cells, whether or not they were also treated with MPP+. In conclusion, eEF1A2 may function as a neuroprotective factor against MPP+, in part by regulating the Akt/mTOR pathway upstream.


Assuntos
Neuroblastoma , Doença de Parkinson , Humanos , 1-Metil-4-fenilpiridínio/toxicidade , Apoptose , Caspase 3/genética , Caspase 3/metabolismo , Linhagem Celular Tumoral , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Neuroblastoma/patologia , Doença de Parkinson/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , Serina-Treonina Quinases TOR/metabolismo , Proteína Supressora de Tumor p53/metabolismo
2.
Cureus ; 15(2): e35334, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36974242

RESUMO

Central neurocytoma (CN) is a rare intraventricular tumor. The common presenting symptoms of CN are headache, vomiting, and visual disturbance, which results from increased intracranial pressure. This report presents a case of CN with unusual clinical presentations. A 25-year-old female with CN presented with a one-day history of unilateral headache, ipsilateral periorbital pain, multifocal paresthesias, and vomiting. Magnetic resonance images showed an intraventricular mass with a soap-bubble appearance and numerous cystic areas typical for CN, causing obstructive hydrocephalus and a midline shift. After one night of rest, her headache, periorbital pain, and paresthesias disappeared. It is possible that the tumor could be mobile with regard to the patient's head position, causing occasional obstruction of the foramen of Monro. Due to the tumor size, which was larger than 4 centimeters, the surgical approach with either gross tumor resection or subtotal resection plus adjuvant radiotherapy should be carefully considered.

3.
Adv Pharmacol Pharm Sci ; 2023: 3830861, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36698448

RESUMO

Metformin (MET) and rapamycin (RAPA) have been reported to protect against neurodegeneration in cellular and animal models of Parkinson's disease (PD). MET, which is a first-line drug for type 2 diabetes, and RAPA are known as mTORC1 inhibitors. MET also acts as an AMPK activator, which leads to the inhibition of mTORC1 activity. mTORC1 is a downstream target of Akt signaling. Inactivation of Akt/mTORC1 and its downstream S6K1 can promote autophagy, a process involved in PD pathogenesis. Based on their mechanisms and potential benefits, we evaluated the potential protective effect of pretreatment with combinations of MET and RAPA in a 1-methyl-4-phenylpyridinium ion (MPP+)-treated SH-SY5Y neuronal cell model of PD. The results showed that MET and RAPA combinations lowered cell viability after exposure to MPP+. Increased LC3-II levels by MPP+ were not altered by MET and RAPA pretreatment. In normal neuronal cells, MET and RAPA pretreatment inhibited the phosphorylation of both Akt and S6K1, and the phosphorylation remained suppressed after MPP+ exposure. These findings suggest that when cells were exposed to MPP+, suppressed phosphorylation of both Akt and S6K1 by the MET and RAPA combination may lead to an inappropriate autophagic response, resulting in increased cell death.

4.
Neuroreport ; 33(8): 336-344, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35594436

RESUMO

OBJECTIVES: The translation elongation factor-1, alpha-2 (eEF1A2) plays an important role in protein synthesis. Mutations in this gene have been described in individuals with neurodevelopmental disorders. Here, we silenced the expression of eEFA2 in human SH-SY5Y neuroblastoma cells and observed its roles in neuronal proliferation and differentiation upon induction with retinoic acid. METHODS: eEF1A2 were silenced using siRNA transfection. Cell proliferation was qualitatively evaluated by Ki-67 immunocytochemistry. Neuronal differentiation was induced with retinoic acid for 3, 5, 7 and 10 days. Neurite length was measured. The expression of microtubule-associated protein 2 (MAP2) was analyzed by western blotting. Tyrosine hydroxylase expression was visualized by immunofluorescence. Cytotoxicity to a neurotoxin, 1-methyl-4-phenylpyridinium (MPP+), was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and western blotting of cleaved caspase-3. RESULTS: eEF1A2 knockdown suppressed the proliferative activity of undifferentiated SH-SY5Y cells as shown by decreased Ki-67 immunostaining. Upon retinoic acid-induction, differentiated neurons with eEF1A2 knockdown exhibited shorter neurite length than untransfected cells, which was associated with the reduction of tyrosine hydroxylase and suppression of MAP2 at 10 days of differentiation. eEF1A2 knockdown decreased the survival of neurons, which was clearly observed in undifferentiated and short-term differentiated cells. Upon treatment with MPP+, cells with eEF1A2 knockdown showed a further reduction in cell survival and an increase of cleaved caspase-3 protein. CONCLUSIONS: Our results suggest that eEF1A2 may be required for neuronal proliferation and differentiation of SH-SY5Y cells. Increased cell death susceptibility against MPP+ in eEF1A2-knockdown neurons may imply the neuroprotective role of eEF1A2.


Assuntos
Proliferação de Células , Neuroblastoma , Crescimento Neuronal , Fator 1 de Elongação de Peptídeos , 1-Metil-4-fenilpiridínio/toxicidade , Caspase 3/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Humanos , Antígeno Ki-67/metabolismo , Neuroblastoma/metabolismo , Crescimento Neuronal/genética , Neurônios/metabolismo , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/metabolismo , Tretinoína/metabolismo , Tretinoína/farmacologia , Tirosina 3-Mono-Oxigenase/metabolismo
5.
Cureus ; 14(1): e21571, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35228930

RESUMO

Myasthenia gravis (MG) is an autoimmune disorder characterized by abnormal neuromuscular transmission. The thymus is believed to play a key role in the pathogenesis of MG, and thymectomy has been an optional treatment for the disease. Relapse of MG after thymectomy has been reported. Exacerbations and new onset of MG following COVID-19 vaccination have also been documented. This report presents a case of a stable MG patient with recent COVID-19 vaccination experiencing flare-ups of symptoms shortly after video-assisted thoracoscopic (VATS) thymectomy. A 31-year-old female received the second dose of the BNT162b2 mRNA COVID-19 vaccine eight days before thymectomy and developed flare-ups of symptoms four days after the surgery. Although the substantial link between MG exacerbations post-thymectomy and pre-thymectomy COVID-19 vaccination cannot be concluded, this observation warrants further research.

6.
Biomed Rep ; 14(4): 36, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33732455

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder that affects movement, and its development is associated with environmental and genetic factors. Genetic variants in GBA and PARK2 are important risk factors implicated in the development of PD; however, their precise roles have yet to be elucidated. The present study aimed to identify and analyse proteins from the skin fibroblasts of patients with PD carrying heterozygous GBA and PARK2 variants, and from healthy controls. Liquid chromatography coupled with tandem mass spectrometry and label-free quantitative proteomics were performed to identify and compare differential protein expression levels. Moreover, protein-protein interaction networks were assessed using Search Tool for Retrieval of Interacting Genes analysis. Using these proteomic approaches, 122 and 119 differentially expressed proteins from skin fibroblasts of patients with PD carrying heterozygous GBA and PARK2 variants, respectively, were identified and compared. According to the results of protein-protein interaction and Gene Ontology analyses, 14 proteins involved in the negative regulation of macromolecules and mRNA metabolic processes, and protein targeting to the membrane exhibited the largest degree of differential expression in the fibroblasts of patients with PD with a GBA variant, whereas 20 proteins involved in the regulation of biological quality, NAD metabolic process and cytoskeletal organization exhibited the largest degree of differential expression in the fibroblasts of patients with PD with a PARK2 variant. Among these, the expression levels of annexin A2 and tubulin ß chain, were most strongly upregulated in the fibroblasts of patients with GBA-PD and PARK2-PD, respectively. Other predominantly expressed proteins were confirmed by western blotting, and the results were consistent with those of the quantitative proteomic analysis. Collectively, the results of the present study demonstrated that the proteomic patterns of fibroblasts of patients with PD carrying heterozygous GBA and PARK2 variants are different and unique. Aberrant expression of the proteins affected by these variants may reflect physiological changes that also occur in neurons, resulting in PD development and progression.

7.
Int J Hematol Oncol Stem Cell Res ; 15(4): 221-229, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35291668

RESUMO

Background The protein kinase B/mammalian target of the rapamycin (Akt/mTOR) pathway is one of the most potent prosurvival signaling cascades that is constitutively active in neuroblastoma. The eukaryotic translation elongation factor-1, alpha-2 (eEF1A2) protein has been found to activate the Akt/mTOR pathway. However, there is a lack of data on the role of eEF1A2 in neuroblastoma. The present study investigated the effect of eEF1A2 silencing on the viability of neuroblastoma cells and its possible signaling. Materials and Methods: Human SH-SY5Y neuroblastoma cells were transfected with small interfering RNA (siRNA) against eEF1A2. After 48 h of transfection, cell viability was assessed using an MTT assay. The mRNA expression of p53, Bax, Bcl-2, caspase-3 and members of the phosphoinositide 3-kinases (PI3K)/Akt/mTOR pathway was determined using quantitative real-time RT-PCR (qRT-PCR). The protein expression of Akt and mTOR was measured using Western blot analysis. Results: eEF1A2 knockdown significantly decreased the viability of neuroblastoma cells. No significant changes were observed on the expression of p53, Bax/Bcl-2 ratio, and caspase-3 mRNAs; however, the upregulated trends were noted for the p53 and Bax/Bcl-2 ratio. eEF1A2 knockdown significantly inhibited the phosphorylation of both Akt and mTOR. Almost all of the class I (PIK3CA, PIK3CB, and PIK3CD) and all of the class II PI3K genes were slightly increased in tumor cells with eEF1A2 knockdown. In addition, a slightly decreased expression of the Akt2, mTORC1, and mTORC2 was observed. Conclusion: eEF1A2 knockdown induced neuroblastoma cell death, in part through the inhibition of Akt and mTOR, suggesting a potential role of eEF1A2 as a molecular target for neuroblastoma therapy.

8.
Neurosci Res ; 164: 55-69, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32275913

RESUMO

1-Methyl-4-phenylpyridinium ion (MPP+) is widely used to induce a cellular model of Parkinson's disease (PD) in dopaminergic cell lines. Downregulation of the protein translation elongation factor 1 alpha (eEF1A) has been reported in the brain tissue of PD patients. eEF1A2, an isoform of eEF1A, is associated with lysosome biogenesis that involves the autophagy process. However, the role of eEF1A2 on autophagic activity in PD has not been elucidated. In this work, we investigated the role of eEF1A2 on autophagy using eEF1A2 siRNA knockdown in differentiated SH-SY5Y neuronal cells treated with MPP+. We found that eEF1A2 was upregulated in differentiated cells, which could be silenced by eEF1A2 siRNA. Significantly, cells treated with MPP+ after eEF1A2 knockdown showed a decreased number of LC3 puncta, decreased LC3-II/LC3-I ratio, and decreased phospho-Beclin-1, compared to the MPP+ alone group. These cells showed extensive areas of mitochondria damage, with a reduction of mitochondrial membrane potential, but reduced mitophagy as indicated by the reduced colocalization of LC3 puncta with damaged mitochondria. Cells with eEF1A2 siRNA plus MPP+ treatment aggravated α-synuclein accumulation but reduced colocalization with LC3. As a result, eEF1A2 knockdown decreased viability, increased apoptotic nuclei, increased caspase-3/7 activation and increased cleaved caspase-3 when cells were treated with MPP+. These results suggest that eEF1A2 is essential for dopaminergic neuron survival against MPP+, in part through autophagy regulation.


Assuntos
1-Metil-4-fenilpiridínio , Doença de Parkinson , 1-Metil-4-fenilpiridínio/toxicidade , Apoptose , Autofagia , Proteína Beclina-1 , Linhagem Celular Tumoral , Humanos , Fator 1 de Elongação de Peptídeos/genética , alfa-Sinucleína/metabolismo
9.
Life Sci ; 258: 118227, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32781074

RESUMO

AIM: eEF1A2 is highly expressed in postmitotic cells and has been reported to interact with the antioxidant enzyme peroxiredoxin 1 (PRDX1). PRDX1 is involved in motor neuron differentiation. Here, we studied the relationship between eEF1A2 and PRDX1 during dopaminergic neuron differentiation, and examined their possible association in an oxidative stress model of Parkinson's disease (PD). MAIN METHODS: Expression of eEF1A2 and PRDX1 in SH-SY5Y cells at various durations of retinoic acid (RA) induction was detected using qRT-PCR, Western blotting and immunofluorescence. Neurons of 10-day differentiation were treated with the PRDX1 inhibitor H7, MPP+ and H7 plus MPP+. The cell viability, the amounts of apoptotic nuclei, DHE signals, and the expression of p53, p-Akt and p-mTOR were determined. The colocalization of eEF1A2 and PRDX1 was visualized using confocal microscopy. KEY FINDINGS: eEF1A2 gradually increased after RA-induced differentiation of SH-SY5Y cells, while PRDX1 protein gradually decreased. MPP+ treatment increased eEF1A2 in both undifferentiated and differentiated neurons; however, PRDX1 appeared to elevate only in mature neurons. The inhibition of the PRDX1 activity with H7 promoted MPP+-induced cell death, as evidenced by decreased cell viability, increased apoptotic nuclei, increased the DHE signal, and increased p53. However, H7 induced the activation of the prosurvival Akt and mTOR in MPP+-treated cells. Besides, a colocalization of eEF1A2 and PRDX1 was evidenced in MPP+-treated neurons. This colocalization was possibly prevented by inhibiting the PRDX1 activity, resulting in aggravated neuronal death. SIGNIFICANCE: Our results suggest that the possible association between eEF1A2 and PRDX1 may be a promising target for modifying neuronal death in PD.


Assuntos
1-Metil-4-fenilpiridínio/toxicidade , Diferenciação Celular/fisiologia , Fator 1 de Elongação de Peptídeos/metabolismo , Peroxirredoxinas/antagonistas & inibidores , Peroxirredoxinas/metabolismo , Antioxidantes/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Herbicidas/toxicidade , Humanos , Fator 1 de Elongação de Peptídeos/análise , Peroxirredoxinas/análise
10.
Front Neurosci ; 14: 303, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32425742

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by the aggregation of α-synuclein protein and selective death of dopaminergic (DA) neurons in the substantia nigra of the midbrain. Although the molecular pathogenesis of PD is not completely understood, a recent study has reported that eukaryotic translation elongation factor 1 alpha (eEF1A) declined in the PD-affected brain. Therefore, the roles of eEF1A1 and eEF1A2 in the prevention of DA neuronal cell death in PD are aimed to be investigated. Herein, by using Caenorhabditis elegans as a PD model, we investigated the role of eft-3/eft-4, the worm homolog of eEF1A1/eEF1A2, on 6-hydroxydopamine (6-OHDA)-induced DA neuron degeneration. Our results demonstrated that the expressions of eft-3 and eft-4 were decreased in the 6-OHDA-induced worms. RNA interference (RNAi) of eft-3 and eft-4 resulted in dramatic exacerbation of DA neurodegeneration induced by 6-OHDA, as well as aggravated the food-sensing behavior, ethanol avoidance, and decreased lifespan when compared with only 6-OHDA-induced worms. Moreover, downregulation of eft-3/4 in 6-OHDA-induced worms suppressed the expression of the anti-apoptotic genes, including PI3K/age-1, PDK-1/pdk-1, mTOR/let-363, and AKT-1,2/akt-1,2, promoting the expression of apoptotic genes such as BH3/egl-1 and Caspase-9/ced-3. Collectively, these findings indicate that eEF1A plays an important role in the 6-OHDA-induced neurodegeneration through the phosphatidylinositol 3-kinase (PI3K)/serine/threonine protein kinase (Akt)/mammalian target of rapamycin (mTOR) pathway and that eEF1A isoforms may be a novel and effective pro-survival factor in protective DA neurons against toxin-induced neuronal death.

11.
Int J Toxicol ; 39(2): 131-140, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31955628

RESUMO

Caffeine is a popular psychostimulant, which is frequently consumed with ethanol. However, the effects of caffeine on neuronal cells constantly exposed to ethanol have not been investigated. Apoptosis and oxidative stress occurring in ethanol-induced neurotoxicity were previously associated with decreased phosphorylation of the mTOR/p70S6K/4E-BP1 signaling proteins. Evidence also suggested that caffeine inhibits the mTOR pathway. In this study, human SH-SY5Y neuroblastoma cells were exposed to caffeine after pretreatment for 24 hours with ethanol. Results indicated that both ethanol and caffeine caused neuronal cell death in a dose- and time-dependent manner. Exposure to 20-mM caffeine for 24 hours magnified reduced cell viability and enhanced apoptotic cell death induced by 200 mM of ethanol pretreatment. The phosphorylation of mTOR, p70S6K, and 4E-BP1 markedly decreased in cells exposed to caffeine after ethanol pretreatment, associated with a decrease of the mitochondrial membrane potential (ΔΨm). These findings suggested that caffeine treatment after neuronal cells were exposed to ethanol resulted in marked cell damages, mediated through enhanced inhibition of mTOR/p70S6K/4E-BP1 signaling leading to impaired ΔΨm and, eventually, apoptotic cell death.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Cafeína/toxicidade , Proteínas de Ciclo Celular/antagonistas & inibidores , Etanol , Síndromes Neurotóxicas/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/antagonistas & inibidores , Serina-Treonina Quinases TOR/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/metabolismo
12.
EXCLI J ; 18: 812-823, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31645842

RESUMO

SH-SY5Y cells exposed to 1-methyl-4-phenylpyridinium (MPP+) develop mitochondrial dysfunction and other cellular responses similar to those that occur in the dopaminergic neurons of patients with Parkinson's disease (PD). It has been shown in animal models of PD that neuronal death can be prevented by metformin, an anti-diabetic drug. Both MPP+ and metformin inhibit complex I of the mitochondrial respiratory chain. It has been reported that decreased levels of the mitochondrial inner membrane proteins TIMM23 and NDUFS3 are associated with the increased generation of reactive oxygen species and mitochondrial depolarization. In the present study, we investigated the effects of metformin on MPP+-induced neurotoxicity using differentiated human SH-SY5Y neuroblastoma cells. The results showed that pretreatment with metformin increased the viability of MPP+-treated SH-SY5Y cells. Pretreatment with metformin decreased the expression of TIMM23 and NDUFS3 in MPP+-treated SH-SY5Y cells. This was correlated with reduced mitochondrial fragmentation and an improvement in the mitochondrial membrane potential. These results suggest that metformin pretreatment protects against MPP+-induced neurotoxicity, and offer insights into the potential role of metformin in protecting against toxin-induced parkinsonism.

15.
Parkinsons Dis ; 2016: 8716016, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26981313

RESUMO

The PI3K/Akt/mTOR pathway is one of dysregulated pathways in Parkinson's disease (PD). Previous studies in nonneuronal cells showed that Akt regulation can be increased by eukaryotic protein elongation factor 1 alpha 2 (eEF1A2). eEF1A2 is proposed to contribute protection against apoptotic death, likely through activation of the PI3K/Akt pathway. Whether eEF1A2 plays a role in the prevention of cell death in PD has not been investigated. Recently, gene profiling on dopaminergic neurons from postmortem PD patients showed both upregulation and downregulation of some PI3K and mTOR genes. In this paper, the expression of all gene members of the PI3K/Akt/mTOR pathway in relation to those of the eEF1A isoforms in a cellular model of PD was investigated at the mRNA level. The results showed a similar trend of upregulation of genes of the eEF1A isoforms (eEF1A1 and eEF1A2) and of the PI3K (classes I-III)/Akt (Akt1, Akt2, and Akt3)/mTOR (mTORC1 and mTORC2) pathway in both nondifferentiated and differentiated SH-SY5Y dopaminergic cells treated with 1-methyl-4-phenylpyridinium (MPP(+)). Upregulation of eEF1A2, Akt1, and mTORC1 was consistent with the relative increase of eEF1A2, Akt, phospho-Akt, and mTORC1 proteins. The possible role of eEF1A isoforms in the regulation of the PI3K/Akt/mTOR pathway in PD is discussed.

16.
Neurol Res Int ; 2015: 734703, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26634154

RESUMO

The human neuroblastoma SH-SY5Y cell line has been used as a dopaminergic cell model for Parkinson's disease research. Whether undifferentiated or differentiated SH-SY5Y cells are more suitable remains controversial. This study aims to evaluate the expression of apoptosis-related mRNAs activated by MPP(+) and evaluate the differential expression of tyrosine hydroxylase (TH) in undifferentiated and retinoic acid- (RA-) induced differentiated cells. The western blot results showed a gradual decrease in TH in undifferentiated cells and a gradual increase in TH in differentiated cells from days 4 to 10 after cell plating. Immunostaining revealed a gradual increase in TH along with neuritic outgrowth in differentiated cells on days 4 and 7 of RA treatment. For the study on cell susceptibility to MPP(+) and the expression of apoptosis-related genes, MTT assay showed a decrease in cell viability to approximately 50% requiring 500 and 1000 µM of MPP(+) for undifferentiated and RA-differentiated cells, respectively. Using real-time RT-PCR, treatment with 500 µM MPP(+) led to significant increases in the Bax/Bcl-2 ratio, p53, and caspase-3 in undifferentiated cells but was without significance in differentiated cells. In conclusion, differentiated cells may be more suitable, and the shorter duration of RA differentiation may make the SH-SY5Y cell model more accessible.

17.
J Toxicol ; 2015: 919058, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26357513

RESUMO

In vitro studies have shown that extracts from mangosteen (Garcinia mangostana Linn.) act as antioxidants and cytoprotective agents against oxidative damage. The protective effect of alpha-mangostin, the major xanthone found in the pericarp of the mangosteen, in cellular models of Parkinson's disease (PD), has not been investigated. This study aims to investigate whether alpha-mangostin could protect SH-SY5Y neuroblastoma cells from MPP(+)-induced apoptosis. The effects of alpha-mangostin on MPP(+)-induced cell death were evaluated with a cell viability assay, staining for nuclear DNA morphology, flow cytometry for apoptotic cells and reactive oxygen species (ROS) production, quantitative real-time PCR for the expression of p53, Bax, and Bcl-2, and western blot analysis for cleaved caspase-3. Concomitant treatment with alpha-mangostin attenuated the effect of MPP(+) on cell viability and apoptotic cell death. Alpha-mangostin reduced ROS formation induced by MPP(+). Bax/Bcl-2 expression ratio and expression of p53 were significantly lower in cells cocultured with alpha-mangostin and MPP(+). The cotreated cells showed a significant decrease in activated caspase-3 compared with MPP(+) treatment alone. Our data suggest that cytoprotection of alpha-mangostin against MPP(+)-induced apoptosis may be associated with the reduction of ROS production, modulating the balance of pro- and antiapoptotic genes, and suppression of caspase-3 activation.

19.
Neurol Int ; 5(3): e15, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24147212

RESUMO

Higher mortality was found in very old patients with acute ischemic stroke treated with intravenous recombinant tissue-plasminogen activator (rtPA) as compared to younger patients. The benefit of thrombolytic treatment in this particular subgroup is still a subject of debate. The purpose of this study was to compare stroke outcomes in Thai patients aged over 70 years treated with and without intravenous rtPA. This was a retrospective review of sequential cases and was not a randomized controlled study. One-hundred and five patients with acute ischemic stroke aged over 70 years who were treated with intravenous rtPA and 105 patients without rtPA treatment (control group) were included in the study. Patients' base-line characteristics and study outcomes of interest were compared. There were significant differences in the base-line characteristics of the two groups. However, for the subgroup of patients aged over 80 years, these characteristics were similar. Those who were treated with intravenous rtPA had a higher rate of favorable outcomes (40% vs 16%; P=0.137) and a lower rate of mortality (22% vs 44%; P=0.128) than patients who did not receive rtPA treatment. In well-matched subgroups of patients aged over 80 years, our retrospective review revealed there was a trend of a higher rate of favorable outcome and lower mortality in patients receiving rtPA treatment. More study is needed to further confirm the suggested benefit of thrombolysis in Asian octogenarian acute stroke patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...