Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 264(Pt 2): 130683, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458289

RESUMO

Nowadays, there is a wide range of deficiencies in treatment of diseases. These limitations are correlated with the inefficient ability of current modalities in the prognosis, diagnosis, and treatment of diseases. Therefore, there is a fundamental need for the development of novel approaches to overcome the mentioned restrictions. Chitosan (CS) nanoparticles, with remarkable physicochemical and mechanical properties, are FDA-approved biomaterials with potential biomedical aspects, like serum stability, biocompatibility, biodegradability, mucoadhesivity, non-immunogenicity, anti-inflammatory, desirable pharmacokinetics and pharmacodynamics, etc. CS-based materials are mentioned as ideal bioactive materials for fabricating nanofibrous scaffolds. Sustained and controlled drug release and in situ gelation are other potential advantages of these scaffolds. This review highlights the latest advances in the fabrication of innovative CS-based nanofibrous scaffolds as potential bioactive materials in regenerative medicine and drug delivery systems, with an outlook on their future applications.


Assuntos
Quitosana , Nanofibras , Quitosana/química , Preparações Farmacêuticas , Nanofibras/química , Materiais Biocompatíveis , Alicerces Teciduais/química , Engenharia Tecidual
2.
Heliyon ; 10(4): e25908, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38380048

RESUMO

Numerous studies demonstrate a strong intrinsic relationship between the boiling and melting temperatures, among other chemical properties, of chemical compounds and pharmaceutical and their molecular structures. Using topological indices, researchers can learn more about the physical traits, chemical stability, and bioactivities of these chemical molecular structures. Topological indices on the chemical structure of chemical materials and drugs are investigated in order to make up for the absence of chemical experiments and provide a theoretical basis for the manufacture of medications and chemical materials. According to well-known degree-based topological indices, the chemical structures of drugs used to treat hepatitis (A, B, C, D, and E) are assessed in this study. The atoms are thought of as the vertices of a graph, and the borders that separate them are thought of as the edges. Using degree-based topological indices, a quantitative structure-property relationship (QSPR) investigation was conducted to predict the physical properties of 16 hepatitis medications. These topological indices link the chemical structure to specific physical characteristics, such as the surface tension of hepatitis medication molecules and molecular weight, enthalpy, boiling point, density, vapor pressure, and logP. Using their molecular structures, the study's drugs are represented as molecular graphs, and 14 topological indices are computed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...