Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 654: 123974, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38447777

RESUMO

Sesamol, a lignan, obtained from sesame seeds (Sesamum indicum Linn., Pedaliaciae) has a promising antioxidant, and anti-inflammatory profile. When applied topically, free sesamol rapidly crosses skin layers and gets absorbed in systemic circulation. Its encapsulation into solid lipid nanoparticles not only improved its localised delivery to skin but also resulted in better skin retention, as found in ex-vivo skin retention studies. Free and encapsulated sesamol was compared for antimicrobial and antibiofilm activity against some common skin pathogens and it was found that encapsulation improved the antimicrobial profile by 200%. In vivo evaluation in diabetic open excision wound model suggested that encapsulation of sesamol in SLNs substantially enhanced its wound healing potential when investigated for biophysical, biochemical and histological parameters. It was envisaged that this was achieved via inhibiting bacterial growth and clearing the bacterial biofilm at the wound site, and by regulating oxidative stress in skin tissue.


Assuntos
Anti-Infecciosos , Lipossomos , Nanopartículas , Fenóis , Benzodioxóis/farmacologia , Cicatrização
2.
Adv Biosyst ; 4(11): e2000111, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33135378

RESUMO

Intermediate filament (IF) proteins are a class of proteins that constitute different filamentous structures in mammalian cells. As such, IF proteins are part of the load-bearing cytoskeleton and support the nuclear envelope. Molecular dynamics simulations show that IF proteins undergo secondary structural changes to compensate mechanical loads, which is confirmed by experimental in vitro studies on IF hydrogels. However, the structural response of intracellular IF to mechanical load is yet to be elucidated in cellulo. Here, in situ nonlinear Raman imaging combined with multivariate data analysis is used to quantify the intracellular secondary structure of the IF cytoskeletal protein vimentin under different states of cellular tension. It is found that cells under native cellular tension contain more unfolded vimentin than chemically or physically relaxed specimens. This indicates that the unfolding of IF proteins occurs intracellularly when sufficient forces are applied, suggesting that IF structures act as local force sensors in the cell to mark locations under large mechanical tension.


Assuntos
Desdobramento de Proteína , Vimentina , Células HeLa , Humanos , Filamentos Intermediários/química , Filamentos Intermediários/metabolismo , Mecanotransdução Celular/fisiologia , Microscopia , Estrutura Secundária de Proteína , Análise Espectral Raman , Vimentina/química , Vimentina/metabolismo
3.
Semin Cell Dev Biol ; 108: 4-13, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32201131

RESUMO

Lipid droplets (LDs), or oil bodies in plants, are specialized organelles that primarily serve as hubs of cellular metabolic energy storage and consumption. These ubiquitous cytoplasmic organelles are derived from the endoplasmic reticulum (ER) and consist of a hydrophobic neutral lipid core - mainly consisting of triglycerides and sterol esters - that is encircled by a phospholipid monolayer. The dynamic metabolic functions of the LDs are mainly executed and regulated by proteins on the monolayer surface. However, its unique architecture puts some structural constraints on the types of proteins that can associate with LDs. The lipid monolayer is decorated with either peripheral proteins or with integral membrane proteins that adopt a monotopic topology. Due to its oil-water interface, which is energetically costly, the LD surface happens to be favorable to the recruitment of many proteins involved in metabolic but also non-metabolic functions. We only started very recently to understand biophysical and biochemical principles controlling protein targeting to LDs. This review aims to summarize the most recent findings regarding this topic and proposes directions that will potentially lead to a better understanding of LD surface characteristics, as compared to bilayer membranes, and how that impacts protein-LD interactions.


Assuntos
Fenômenos Biofísicos , Gotículas Lipídicas/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Transporte Proteico , Proteoma/metabolismo
4.
Plant J ; 101(1): 156-170, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31498930

RESUMO

Lincomycin (LIN)-mediated inhibition of protein synthesis in chloroplasts prevents the greening of seedlings, represses the activity of photosynthesis-related genes in the nucleus, including LHCB1.2, and induces the phenylpropanoid pathway, resulting in the production of anthocyanins. In genomes uncoupled (gun) mutants, LHCB1.2 expression is maintained in the presence of LIN or other inhibitors of early chloroplast development. In a screen using concentrations of LIN lower than those employed to isolate gun mutants, we have identified happy on lincomycin (holi) mutants. Several holi mutants show an increased tolerance to LIN, exhibiting de-repressed LHCB1.2 expression and chlorophyll synthesis in seedlings. The mutations responsible were identified by whole-genome single-nucleotide polymorphism (SNP) mapping, and most were found to affect the phenylpropanoid pathway; however, LHCB1.2 expression does not appear to be directly regulated by phenylpropanoids, as indicated by the metabolic profiling of mutants. The most potent holi mutant is defective in a subunit of cellulose synthase encoded by IRREGULAR XYLEM 3, and comparative analysis of this and other cell-wall mutants establishes a link between secondary cell-wall integrity and early chloroplast development, possibly involving altered ABA metabolism or sensing.


Assuntos
Arabidopsis/metabolismo , Celulose/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Lincomicina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...