Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 12(1): e8555, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35127051

RESUMO

Resurrection studies are a useful tool to measure how phenotypic traits have changed in populations through time. If these trait modifications correlate with the environmental changes that occurred during the time period, it suggests that the phenotypic changes could be a response to selection. Selfing, through its reduction of effective size, could challenge the ability of a population to adapt to environmental changes. Here, we used a resurrection study to test for adaptation in a selfing population of Medicago truncatula, by comparing the genetic composition and flowering times across 22 generations. We found evidence for evolution toward earlier flowering times by about two days and a peculiar genetic structure, typical of highly selfing populations, where some multilocus genotypes (MLGs) are persistent through time. We used the change in frequency of the MLGs through time as a multilocus fitness measure and built a selection gradient that suggests evolution toward earlier flowering times. Yet, a simulation model revealed that the observed change in flowering time could be explained by drift alone, provided the effective size of the population is small enough (<150). These analyses suffer from the difficulty to estimate the effective size in a highly selfing population, where effective recombination is severely reduced.

2.
PLoS Pathog ; 16(10): e1008935, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33057453

RESUMO

In a number of species, individuals exposed to pathogens can mount an immune response and transmit this immunological experience to their offspring, thereby protecting them against persistent threats. Such vertical transfer of immunity, named trans-generational immune priming (TGIP), has been described in both vertebrates and invertebrates. Although increasingly studied during the last decade, the mechanisms underlying TGIP in invertebrates are still elusive, especially those protecting the earliest offspring life stage, i.e. the embryo developing in the egg. In the present study, we combined different proteomic and transcriptomic approaches to determine whether mothers transfer a "signal" (such as fragments of infecting bacteria), mRNA and/or protein/peptide effectors to protect their eggs against two natural bacterial pathogens, namely the Gram-positive Bacillus thuringiensis and the Gram-negative Serratia entomophila. By taking the mealworm beetle Tenebrio molitor as a biological model, our results suggest that eggs are mainly protected by an active direct transfer of a restricted number of immune proteins and of antimicrobial peptides. In contrast, the present data do not support the involvement of mRNA transfer while the transmission of a "signal", if it happens, is marginal and only occurs within 24h after maternal exposure to bacteria. This work exemplifies how combining global approaches helps to disentangle the different scenarios of a complex trait, providing a comprehensive characterization of TGIP mechanisms in T. molitor. It also paves the way for future alike studies focusing on TGIP in a wide range of invertebrates and vertebrates to identify additional candidates that could be specific to TGIP and to investigate whether the TGIP mechanisms found herein are specific or common to all insect species.


Assuntos
Infecções Bacterianas/imunologia , Larva/microbiologia , Óvulo/imunologia , Serratia/patogenicidade , Tenebrio/microbiologia , Animais , Bacillus thuringiensis/patogenicidade , Imunidade/imunologia , Proteômica/métodos , Tenebrio/imunologia
3.
Front Immunol ; 10: 1938, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31475001

RESUMO

Trans-generational immune priming (TGIP) refers to the transfer of the parental immunological experience to its progeny. This may result in offspring protection from repeated encounters with pathogens that persist across generations. Although extensively studied in vertebrates for over a century, this phenomenon has only been identified 20 years ago in invertebrates. Since then, invertebrate TGIP has been the focus of an increasing interest, with half of studies published during the last few years. TGIP has now been tested in several invertebrate systems using various experimental approaches and measures to study it at both functional and evolutionary levels. However, drawing an overall picture of TGIP from available studies still appears to be a difficult task. Here, we provide a comprehensive review of TGIP in invertebrates with the objective of confronting all the data generated to date to highlight the main features and mechanisms identified in the context of its ecology and evolution. To this purpose, we describe all the articles reporting experimental investigation of TGIP in invertebrates and propose a critical analysis of the experimental procedures performed to study this phenomenon. We then investigate the outcome of TGIP in the offspring and its ecological and evolutionary relevance before reviewing the potential molecular mechanisms identified to date. In the light of this review, we build hypothetical scenarios of the mechanisms through which TGIP might be achieved and propose guidelines for future investigations.


Assuntos
Adaptação Fisiológica/imunologia , Imunidade Adaptativa/imunologia , Sistema Imunitário/imunologia , Padrões de Herança/imunologia , Invertebrados/imunologia , Adaptação Fisiológica/genética , Imunidade Adaptativa/genética , Animais , Evolução Molecular , Feminino , Sistema Imunitário/metabolismo , Padrões de Herança/genética , Invertebrados/classificação , Invertebrados/genética , Larva/genética , Larva/imunologia , Masculino
4.
J Anim Ecol ; 87(2): 448-463, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28239855

RESUMO

Many organisms can improve their immune response as a function of their immunological experience or that of their parents. This phenomenon, called immune priming, has likely evolved from repetitive challenges by the same pathogens during the host lifetime or across generation. All pathogens may not expose host to the same probability of re-infection, and immune priming is expected to evolve from pathogens exposing the host to the greatest probability of re-infection. Under this hypothesis, the priming response to these pathogens should be specifically more efficient and less costly than to others. We examined the specificity of immune priming within and across generations in the mealworm beetle, Tenebrio molitor, by comparing survival of individuals to infection with bacteria according to their own immunological experience or that of their mother with these bacteria. We found that insects primed with Gram-positive bacteria became highly protected against both Gram-positive and Gram-negative bacterial infections, mainly due to an induced persistent antibacterial response, which did not exist in insects primed with Gram-negative bacteria. Insects primed with Gram-positive bacteria also exhibited enhanced concentration of haemocytes, but their implication in acquired resistance was not conclusive because of the persistent antibacterial activity in the haemolymph. Offspring maternally primed with Gram-positive and Gram-negative bacteria exhibited similarly improved immunity, whatever the bacteria used for the infection. Such maternal protection was costly in the larval development of offspring, but this cost was lower for offspring maternally primed with Gram-positive bacteria. While T. molitor can develop some levels of primed response to Gram-negative bacteria, the priming response to Gram-positive bacteria was more efficient and less costly. We concluded that Gram-positive bacterial pathogens were of paramount importance in the evolution of immune priming in this insect species.


Assuntos
Besouros/imunologia , Besouros/microbiologia , Bactérias Gram-Negativas/fisiologia , Bactérias Gram-Positivas/fisiologia , Interações entre Hospedeiro e Microrganismos/imunologia , Animais , Bactérias Gram-Negativas/imunologia , Bactérias Gram-Positivas/imunologia , Imunidade/fisiologia
5.
Dev Comp Immunol ; 79: 105-112, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29106988

RESUMO

Immune-challenged mothers can improve their offspring immunity through trans-generational immune priming (TGIP). In insects, TGIP endows the offspring with lifetime immunity, including the eggs, which are likely exposed soon after maternal infection. Egg protection may rely on the transfer of maternal immune effectors to the egg or/and the induction of egg immune genes. These respective mechanisms are assumed to have early-life fitness costs of different magnitude for the offspring. We provide evidence in the mealworm beetle Tenebrio molitor that enhanced egg immunity following a maternal immune challenge is achieved by both of these mechanisms but in a pathogen-dependent manner. While previously found having late-life fitness costs for the offspring, TGIP here improved egg hatching success and early larval survival, in addition of improving offspring immunity. These results suggest that early-life of primed offspring is critical in the optimization of life history trajectory of this insect under trans-generational pathogenic threats.


Assuntos
Arthrobacter/imunologia , Bacillus thuringiensis/imunologia , Infecções Bacterianas/imunologia , Imunidade Materno-Adquirida , Óvulo/imunologia , Tenebrio/imunologia , Animais , Evolução Biológica , Células Cultivadas , Aptidão Genética , Interações Hospedeiro-Patógeno , Imunização , Larva
6.
Sci Rep ; 7(1): 12429, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28963510

RESUMO

Immunopathology corresponds to self-damage of the inflammatory response, resulting from oxidizing molecules produced when the immune system is activated. Immunopathology often contributes to age-related diseases and is believed to accelerate ageing. Prevention of immunopathology relies on endogenous antioxidant enzymes and the consumption of dietary antioxidants, including carotenoids such as astaxanthin. Astaxanthin currently raises considerable interest as a powerful antioxidant and for its potential in alleviating age-related diseases. Current in vitro and short-term in vivo studies provide promising results about immune-stimulating and antioxidant properties of astaxanthin. However, to what extent dietary supplementation with astaxanthin can prevent long-term adverse effects of immunopathology on longevity is unknown so far. Here, using the mealworm beetle, Tenebrio molitor, as biological model we tested the effect of lifetime dietary supplementation with astaxanthin on longevity when exposed to early life inflammation. While supplementation with astaxanthin was found to lessen immunopathology cost on larval survival and insect longevity, it was also found to reduce immunity, growth rate and the survival of non immune-challenged larvae. This study therefore reveals that astaxanthin prevents immunopathology through an immune depressive effect and can have adverse consequences on growth.


Assuntos
Antioxidantes/administração & dosagem , Carotenoides/administração & dosagem , Suplementos Nutricionais , Longevidade/efeitos dos fármacos , Tenebrio/efeitos dos fármacos , Animais , Bacillus thuringiensis/imunologia , Contagem de Células , Hemócitos/efeitos dos fármacos , Hemócitos/imunologia , Imunidade/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/imunologia , Longevidade/imunologia , Viabilidade Microbiana , Tenebrio/crescimento & desenvolvimento , Tenebrio/imunologia , Xantofilas/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...