Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 150: 113094, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35658242

RESUMO

All five muscarinic receptors have important physiological roles. The endothelial M2 and M3 subtypes regulate arterial tone through direct coupling to Gq or Gi/o proteins. Yet, we lack selective pharmacological drugs to assess the respective contribution of muscarinic receptors to a given function. We used mamba snake venoms to identify a selective M2R ligand to investigate its contribution to arterial contractions. Using a bio-guided screening binding assay, we isolated MT9 from the black mamba venom, a three-finger toxin active on the M2R subtype. After sequencing and chemical synthesis of MT9, we characterized its structure by X-ray diffraction and determined its pharmacological characteristics by binding assays, functional tests, and ex vivo experiments on rat and human arteries. Although MT9 belongs to the three-finger fold toxins family, it is phylogenetically apart from the previously discovered muscarinic toxins, suggesting that two groups of peptides evolved independently and in a convergent way to target muscarinic receptors. The affinity of MT9 for the M2R is 100 times stronger than that for the four other muscarinic receptors. It also antagonizes the M2R/Gi pathways in cell-based assays. MT9 acts as a non-competitive antagonist against acetylcholine or arecaine, with low nM potency, for the activation of isolated rat mesenteric arteries. These results were confirmed on human internal mammary arteries. In conclusion, MT9 is the first fully characterized M2R-specific natural toxin. It should provide a tool for further understanding of the effect of M2R in various arteries and may position itself as a new drug candidate in cardio-vascular diseases.


Assuntos
Dendroaspis , Toxinas Biológicas , Animais , Artérias/metabolismo , Colinérgicos , Dendroaspis/metabolismo , Venenos Elapídicos/química , Venenos Elapídicos/metabolismo , Venenos Elapídicos/farmacologia , Humanos , Peptídeos/farmacologia , Ratos , Receptores Muscarínicos/metabolismo
2.
Oxid Med Cell Longev ; 2022: 7377877, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35633883

RESUMO

50% of patients with heart failure have a preserved ejection fraction (HFpEF). Numerous studies have investigated the pathophysiological mechanisms of HFpEF and have shown that endothelial dysfunction plays an important role in HFpEF. Yet no studies answered whether endothelial dysfunction could be the cause or is the consequence of HFpEF. Recently, we have shown that the endothelial overexpression of human ß 3-adrenoreceptor (Tgß 3) in rats leads to the slow development of diastolic dysfunction over ageing. The aim of the study is to decipher the involvement of endothelial dysfunction in the HFpEF development. For that, we investigated endothelial and cardiac function in 15-, 30-, and 45-week-old wild-type (WT) and Tgß 3 rats. The aortic expression of • NO synthase (NOS) isoforms was evaluated by Western blot. Finally, electron paramagnetic resonance measurements were performed on aortas to evaluate • NO and O2 •- production. Vascular reactivity was altered as early as 15 weeks of age in response to isoproterenol in Tgß 3 aortas and mesenteric arteries. NOS1 (neuronal NOS) expression was higher in the Tgß 3 aorta at 30 and 45 weeks of age (30 weeks: WT: 1.00 ± 0.21; Tgß 3: 6.08 ± 2.30; 45 weeks: WT: 1.00 ± 0.12; Tgß 3: 1.55 ± 0.17; p < 0.05). Interestingly, the endothelial NOS (NOS3) monomer form is increased in Tgß 3 rats at 45 weeks of age (ratio NOS3 dimer/NOS3 monomer; WT: 1.00 ± 0.37; Tgß 3: 0.13 ± 0.05; p < 0.05). Aortic •NO production was increased by NOS2 (inducible NOS) at 15 weeks of age in Tgß 3 rats (+52% vs. WT). Aortic O2 •- production was increased in Tgß 3 rats at 30 and 45 weeks of age (+75% and+76%, respectively, vs. WT, p < 0.05). We have shown that endothelial dysfunction and oxidative stress are present as early as 15 weeks of age and therefore conclude that endothelial dysfunction could be a cause of HFpEF development.


Assuntos
Insuficiência Cardíaca , Doenças Vasculares , Animais , Aorta/metabolismo , Insuficiência Cardíaca/metabolismo , Humanos , Ratos , Volume Sistólico , Função Ventricular Esquerda
3.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34502162

RESUMO

Sepsis in the young population, which is particularly at risk, is rarely studied. O-GlcNAcylation is a post-translational modification involved in cell survival, stress response and metabolic regulation. O-GlcNAc stimulation is beneficial in adult septic rats. This modification is physiologically higher in the young rat, potentially limiting the therapeutic potential of O-GlcNAc stimulation in young septic rats. The aim is to evaluate whether O-GlcNAc stimulation can improve sepsis outcome in young rats. Endotoxemic challenge was induced in 28-day-old rats by lipopolysaccharide injection (E. Coli O111:B4, 20 mg·kg-1) and compared to control rats (NaCl 0.9%). One hour after lipopolysaccharide injection, rats were randomly assigned to no therapy, fluidotherapy (NaCl 0.9%, 10 mL·kg-1) ± NButGT (10 mg·kg-1) to increase O-GlcNAcylation levels. Physiological parameters and plasmatic markers were evaluated 2h later. Finally, untargeted mass spectrometry was performed to map cardiac O-GlcNAcylated proteins. Lipopolysaccharide injection induced shock with a decrease in mean arterial pressure and alteration of biological parameters (p < 0.05). NButGT, contrary to fluidotherapy, was associated with an improvement of arterial pressure (p < 0.05). ATP citrate lyase was identified among the O-GlcNAcylated proteins. In conclusion, O-GlcNAc stimulation improves outcomes in young septic rats. Interestingly, identified O-GlcNAcylated proteins are mainly involved in cellular metabolism.


Assuntos
ATP Citrato (pro-S)-Liase/metabolismo , Acetilglucosamina/metabolismo , Processamento de Proteína Pós-Traducional , Choque Séptico/metabolismo , Acetilação , Animais , Hidratação/métodos , Lipopolissacarídeos/toxicidade , Ratos , Choque Séptico/etiologia , Choque Séptico/terapia
4.
Int J Mol Sci ; 22(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466650

RESUMO

The use of animal models in fundamental or pre-clinical research remains an absolute requirement for understanding human pathologies and developing new drugs. In order to transpose these results into clinical practice, many parameters must be taken into account to limit bias. Attention has recently been focused on the sex, age or even strain of each animal, but the impact of diet has been largely neglected. Soy, which is commonly used in the diet in varying quantities can affect their physiology. In order to assess whether the presence of soy can impact the obtained results, we studied the impact of a soy-based diet versus a soy-free diet, on diastolic function in a rat model based on transgenic overexpression of the ß3-adrenergic receptors in the endothelium and characterized by the appearance of diastolic dysfunction with age. Our results show that the onset of diastolic dysfunction is only observed in transgenic male rats fed with a soy-free diet in the long term. Our study highlights the importance of the diet's choice in the study design process, especially regarding the proportion of soy, to correctly interpret the outcome as low-cost diets are more likely to be highly concentrated in soy.


Assuntos
Ração Animal , Diástole , Glycine max , Ventrículos do Coração/fisiopatologia , Fitoestrógenos , Ração Animal/análise , Animais , Dieta , Modelos Animais de Doenças , Feminino , Ventrículos do Coração/metabolismo , Humanos , Masculino , Fitoestrógenos/análise , Fitoestrógenos/metabolismo , Ratos , Ratos Transgênicos , Receptores Adrenérgicos beta 3/genética , Glycine max/química , Glycine max/metabolismo
5.
ESC Heart Fail ; 7(6): 4159-4171, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33034410

RESUMO

AIMS: Diastolic dysfunction is common in cardiovascular diseases, particularly in the case of heart failure with preserved ejection fraction. The challenge is to develop adequate animal models to envision human therapies in the future. It has been hypothesized that this diastolic dysfunction is linked to alterations in the nitric oxide (• NO) pathway. To investigate this issue further, we investigated the cardiac functions of a transgenic rat model (Tgß3 ) that overexpresses the human ß3 -adrenoceptor (hß3 -AR) in the endothelium with the underlying rationale that the • NO pathway should be stimulated in the endothelium. METHODS AND RESULTS: Transgenic rats (Tgß3 ) that express hß3 -AR under the control of intercellular adhesion molecule 2 promoter were developed for a specific expression in endothelial cells. Transcriptomic analyses were performed on left ventricular tissue from 45-week-old rats. Among all altered genes, we focus on • NO synthase expression and endothelial function with arterial reactivity and evaluation of • NO and O2 •- production. Cardiac function was characterized by echocardiography, invasive haemodynamic studies, and working heart studies. Transcriptome analyses illustrate that several key genes are regulated by the hß3 -AR overexpression. Overexpression of hß3 -AR leads to a reduction of Nos3 mRNA expression (-72%; P < 0.05) associated with a decrease in protein expression (-19%; P < 0.05). Concentration-dependent vasodilation to isoproterenol was significantly reduced in Tgß3 aorta (-10%; P < 0.05), while • NO and O2 •- production was increased. In the same time, Tgß3 rats display progressively increasing diastolic dysfunction with age, as shown by an increase in the E/A filing ratio [1.15 ± 0.01 (wild type, WT) vs. 1.33 ± 0.04 (Tgß3 ); P < 0.05] and in left ventricular end-diastolic pressure [5.57 ± 1.23 mmHg (WT) vs. 11.68 ± 1.11 mmHg (Tgß3 ); P < 0.05]. In isolated working hearts, diastolic stress using increasing preload levels led to a 20% decrease in aortic flow [55.4 ± 1.9 mL/min (WT) vs. 45.8 ± 2.5 mL/min (Tgß3 ); P < 0.05]. CONCLUSIONS: The Tgß3 rat model displays the expected increase in • NO production upon ageing and develops diastolic dysfunction. These findings provide a further link between endothelial and cardiac dysfunction. This rat model should be valuable for future preclinical evaluation of candidate drugs aimed at correcting diastolic dysfunction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...