Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Infect Dis ; 219(8): 1187-1197, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30407513

RESUMO

BACKGROUND: The 2014 West African outbreak of Ebola virus disease highlighted the urgent need to develop an effective Ebola vaccine. METHODS: We undertook 2 phase 1 studies assessing safety and immunogenicity of the viral vector modified vaccinia Ankara virus vectored Ebola Zaire vaccine (MVA-EBO-Z), manufactured rapidly on a new duck cell line either alone or in a heterologous prime-boost regimen with recombinant chimpanzee adenovirus type 3 vectored Ebola Zaire vaccine (ChAd3-EBO-Z) followed by MVA-EBO-Z. Adult volunteers in the United Kingdom (n = 38) and Senegal (n = 40) were vaccinated and an accelerated 1-week prime-boost regimen was assessed in Senegal. Safety was assessed by active and passive collection of local and systemic adverse events. RESULTS: The standard and accelerated heterologous prime-boost regimens were well-tolerated and elicited potent cellular and humoral immunogenicity in the United Kingdom and Senegal, but vaccine-induced antibody responses were significantly lower in Senegal. Cellular immune responses measured by flow cytometry were significantly greater in African vaccinees receiving ChAd3 and MVA vaccines in the same rather than the contralateral limb. CONCLUSIONS: MVA biomanufactured on an immortalized duck cell line shows potential for very large-scale manufacturing with lower cost of goods. This first trial of MVA-EBO-Z in humans encourages further testing in phase 2 studies, with the 1-week prime-boost interval regimen appearing to be particularly suitable for outbreak control. CLINICAL TRIALS REGISTRATION: NCT02451891; NCT02485912.


Assuntos
Vacinas contra Ebola/farmacologia , Adolescente , Adulto , Vacinas contra Ebola/administração & dosagem , Vacinas contra Ebola/efeitos adversos , Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Feminino , Humanos , Esquemas de Imunização , Imunização Secundária/efeitos adversos , Imunização Secundária/métodos , Masculino , Pessoa de Meia-Idade , Senegal , Reino Unido , Adulto Jovem
2.
Lancet Respir Med ; 3(3): 190-200, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25726088

RESUMO

BACKGROUND: HIV-1 infection is associated with increased risk of tuberculosis and a safe and effective vaccine would assist control measures. We assessed the safety, immunogenicity, and efficacy of a candidate tuberculosis vaccine, modified vaccinia virus Ankara expressing antigen 85A (MVA85A), in adults infected with HIV-1. METHODS: We did a randomised, double-blind, placebo-controlled, phase 2 trial of MVA85A in adults infected with HIV-1, at two clinical sites, in Cape Town, South Africa and Dakar, Senegal. Eligible participants were aged 18-50 years, had no evidence of active tuberculosis, and had baseline CD4 counts greater than 350 cells per µL if they had never received antiretroviral therapy or greater than 300 cells per µL (and with undetectable viral load before randomisation) if they were receiving antiretroviral therapy; participants with latent tuberculosis infection were eligible if they had completed at least 5 months of isoniazid preventive therapy, unless they had completed treatment for tuberculosis disease within 3 years before randomisation. Participants were randomly assigned (1:1) in blocks of four by randomly generated sequence to receive two intradermal injections of either MVA85A or placebo. Randomisation was stratified by antiretroviral therapy status and study site. Participants, nurses, investigators, and laboratory staff were masked to group allocation. The second (booster) injection of MVA85A or placebo was given 6-12 months after the first vaccination. The primary study outcome was safety in all vaccinated participants (the safety analysis population). Safety was assessed throughout the trial as defined in the protocol. Secondary outcomes were immunogenicity and vaccine efficacy against Mycobacterium tuberculosis infection and disease, assessed in the per-protocol population. Immunogenicity was assessed in a subset of participants at day 7 and day 28 after the first and second vaccination, and M tuberculosis infection and disease were assessed at the end of the study. The trial is registered with ClinicalTrials.gov, number NCT01151189. FINDINGS: Between Aug 4, 2011, and April 24, 2013, 650 participants were enrolled and randomly assigned; 649 were included in the safety analysis (324 in the MVA85A group and 325 in the placebo group) and 645 in the per-protocol analysis (320 and 325). 513 (71%) participants had CD4 counts greater than 300 cells per µL and were receiving antiretroviral therapy; 136 (21%) had CD4 counts above 350 cells per µL and had never received antiretroviral therapy. 277 (43%) had received isoniazid prophylaxis before enrolment. Solicited adverse events were more frequent in participants who received MVA85A (288 [89%]) than in those given placebo (235 [72%]). 34 serious adverse events were reported, 17 (5%) in each group. MVA85A induced a significant increase in antigen 85A-specific T-cell response, which peaked 7 days after both vaccinations and was primarily monofunctional. The number of participants with negative QuantiFERON-TB Gold In-Tube findings at baseline who converted to positive by the end of the study was 38 (20%) of 186 in the MVA85A group and 40 (23%) of 173 in the placebo group, for a vaccine efficacy of 11·7% (95% CI -41·3 to 44·9). In the per-protocol population, six (2%) cases of tuberculosis disease occurred in the MVA85A group and nine (3%) occurred in the placebo group, for a vaccine efficacy of 32·8% (95% CI -111·5 to 80·3). INTERPRETATION: MVA85A was well tolerated and immunogenic in adults infected with HIV-1. However, we detected no efficacy against M tuberculosis infection or disease, although the study was underpowered to detect an effect against disease. Potential reasons for the absence of detectable efficacy in this trial include insufficient induction of a vaccine-induced immune response or the wrong type of vaccine-induced immune response, or both. FUNDING: European & Developing Countries Clinical Trials Partnership (IP.2007.32080.002), Aeras, Bill & Melinda Gates Foundation, Wellcome Trust, and Oxford-Emergent Tuberculosis Consortium.


Assuntos
Infecções por HIV/complicações , HIV-1 , Vacinas contra a Tuberculose/administração & dosagem , Tuberculose/prevenção & controle , Adolescente , Adulto , Anticorpos Antibacterianos/imunologia , Antígenos CD/metabolismo , Contagem de Linfócito CD4 , Coinfecção/complicações , Método Duplo-Cego , Feminino , Voluntários Saudáveis , Humanos , Imunidade Ativa , Imunização Secundária , Imunoglobulina G/metabolismo , Injeções Intradérmicas , Masculino , Pessoa de Meia-Idade , Mycobacterium tuberculosis/imunologia , Resultado do Tratamento , Tuberculose/complicações , Vacinas contra a Tuberculose/efeitos adversos , Vacinas contra a Tuberculose/imunologia , Vacinas de DNA , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...