Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
STAR Protoc ; 4(3): 102413, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454299

RESUMO

Here we present a protocol to generate standardized cerebral organoids with hippocampal regional specification using morphogen WNT3a. We describe steps for isolating mouse embryonic (E14.5) neural stem cells from the brain subgranular zone, preparing organoids samples for immunofluorescence, calcium imaging, and metabolic profiling. This protocol can be used to generate mouse brain organoids for developmental studies, modeling disease, and drug screening. Organoids can be obtained in one month, thus providing a rapid tool for high-throughput data validation. For complete details on the use and execution of this protocol, please refer to Ciarpella et al. "Murine cerebral organoids develop network of functional neurons and hippocampal brain region identity".1.


Assuntos
Células-Tronco Neurais , Animais , Camundongos , Neurônios , Hipocampo , Encéfalo , Organoides
2.
Front Biosci (Landmark Ed) ; 27(8): 249, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-36042162

RESUMO

BACKGROUND: Mesenchymal stromal cells (MSC) from bone marrow have been reported to undergo the initial phases of neural differentiation in response to an increase of intracellular cAMP. We investigated the possibility that a similar effect applies to chorion-derived MSC. METHODS: The intracellular concentration of cAMP was increased either by forskolin, to promote its synthesis, or by inhibitors of its degradation. The consequent reduction in the expression of mesenchymal markers was associated with the appearance of neuron-like morphology in a subset of cells. The effect was measured and characterized using biomarkers and an inhibitor of cAMP response element-binding protein (CREB). RESULTS: The dramatic morphological change induced by all the treatments that promoted intracellular cAMP was transient and peaked on the third day. After that, cells returned to the typical fibroblast-like appearance within 24 hours. The distinctive morphology was associated to the expression of neuregulin 1, doublecortin, neuron-specific class III ß-tubulin, and required cAMP response element-binding protein activity. Basic-fibroblast growth factor (b-FGF) treatment increased both the timeframe and number of cells undergoing the morphological change induced by the effect of forskolin. As opposite, arginine-vasopressin (AVP) and sphingosine-1-phosphate (S1P) reduced it. CONCLUSIONS: We conclude that cAMP and the ensuing CREB activation trigger a preliminary step towards neuronal differentiation of chorion-derived MSC. However, likewise other MSC, the stimulus is not sufficient to promote stable differentiation.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Células-Tronco Mesenquimais , Diferenciação Celular , Células Cultivadas , Córion , Colforsina/metabolismo , Colforsina/farmacologia , Neurônios
3.
Pharmacol Res ; 178: 106149, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35240272

RESUMO

Neural tissue has high metabolic requirements. Following spinal cord injury (SCI), the damaged tissue suffers from a severe metabolic impairment, which aggravates axonal degeneration and neuronal loss. Impaired cellular energetic, tricarboxylic acid (TCA) cycle and oxidative phosphorylation metabolism in neuronal cells has been demonstrated to be a major cause of neural tissue death and regeneration failure following SCI. Therefore, rewiring the spinal cord cell metabolism may be an innovative therapeutic strategy for the treatment of SCI. In this study, we evaluated the therapeutic effect of the recovery of oxidative metabolism in a mouse model of severe contusive SCI. Oral administration of TCA cycle intermediates, co-factors, essential amino acids, and branched-chain amino acids was started 3 days post-injury and continued until the end of the experimental procedures. Metabolomic, immunohistological, and biochemical analyses were performed on the injured spinal cord sections. Administration of metabolic precursors enhanced spinal cord oxidative metabolism. In line with this metabolic shift, we observed the activation of the mTORC1 anabolic pathway, the increase in mitochondrial mass, and ROS defense which effectively prevented the injury-induced neural cell apoptosis in treated animals. Consistently, we found more choline acetyltransferase (ChAT)-expressing motor neurons and increased neurofilament-positive corticospinal axons in the spinal cord parenchyma of the treated mice. Interestingly, oral administration of the metabolic precursors increased the number of activated microglia expressing the CD206 marker suggestive of a pro-resolutive, M2-like phenotype. These molecular and histological modifications observed in treated animals ultimately led to a significant, although partial, improvement of the motor functions. Our data demonstrate that rewiring the cellular metabolism can represent an effective strategy to treat SCI.


Assuntos
Microglia , Traumatismos da Medula Espinal , Animais , Axônios/fisiologia , Metabolismo Energético , Camundongos , Microglia/metabolismo , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia
4.
iScience ; 24(12): 103438, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34901791

RESUMO

Brain organoids are in vitro three-dimensional (3D) self-organized neural structures, which can enable disease modeling and drug screening. However, their use for standardized large-scale drug screening studies is limited by their high batch-to-batch variability, long differentiation time (10-20 weeks), and high production costs. This is particularly relevant when brain organoids are obtained from human induced pluripotent stem cells (iPSCs). Here, we developed, for the first time, a highly standardized, reproducible, and fast (5 weeks) murine brain organoid model starting from embryonic neural stem cells. We obtained brain organoids, which progressively differentiated and self-organized into 3D networks of functional neurons with dorsal forebrain phenotype. Furthermore, by adding the morphogen WNT3a, we generated brain organoids with specific hippocampal region identity. Overall, our results showed the establishment of a fast, robust and reproducible murine 3D in vitro brain model that may represent a useful tool for high-throughput drug screening and disease modeling.

5.
Eur Addict Res ; 27(6): 439-446, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33940577

RESUMO

INTRODUCTION: Although the effects of proximal smoking cues have been widely studied in smokers, little is known on the features associated with background spatial context effect, that is, "context reactivity." The aim of this study was to investigate context reactivity exhibited by smokers in virtual cue-free domestic scenarios. METHODS: Sixty-nine participants divided in 2 cohorts (33 smokers and 36 non-smokers) were exposed to a virtual reality session with 4 domestic room scenarios presented in a balanced order: bedroom, bathroom, kitchen, and living room. RESULTS: We showed that (i) it is possible to elicit smoking craving in smokers in virtual reality, and (ii) these effects are room dependent and (iii) associated with a lower sense of presence; furthermore, (iv) smokers reported higher craving scores for alcohol and food in a room-dependent fashion compared to non-smokers. CONCLUSION: Our study provides an experimental paradigm for assessing context reactivity in smokers and suggests a potential use for the identification of non-pharmacological interventions as a co-adjuvant of smoking cessation treatment.


Assuntos
Fumantes , Abandono do Hábito de Fumar , Fissura , Sinais (Psicologia) , Humanos , Fumar , Fumar Tabaco
6.
Cell Tissue Res ; 383(3): 1103-1122, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33159578

RESUMO

The expression of leptin and leptin receptor (Ob-R) has been partially elucidated in colon of patients with inflammatory bowel diseases (IBDs), even though leptin is involved in angiogenesis and inflammation. We previously reported overexpression of GLUT5 fructose transporter, in aberrant clusters of lymphatic vessels in lamina propria of IBD and controls. Here, we examine leptin and Ob-R expression in the same biopsies. Specimens were obtained from patients with ulcerative colitis (UC), Crohn's disease (CD) and controls who underwent screening for colorectal cancer, follow-up after polypectomy or with a history of lower gastrointestinal symptoms. Immunohistochemistry revealed leptin in apical and basolateral membranes of short epithelial portions, Ob-R on the apical pole of epithelial cells. Leptin and Ob-R were also identified in structures and cells scattered in the lamina propria. In UC, a significant correlation between leptin and Ob-R in the lamina propria was found in all inflamed samples, beyond non-inflamed samples of the proximal tract, while in CD, it was found in inflamed distal samples. Most of the leptin and Ob-R positive areas in the lamina propria were also GLUT5 immunoreactive in inflamed and non-inflamed mucosa. A significant correlation of leptin or Ob-R expression with GLUT5 was observed in the inflamed distal samples from UC. Our findings suggest that there are different sites of leptin and Ob-R expression in large intestine and those in lamina propria do not reflect the status of mucosal inflammation. The co-localization of leptin and/or Ob-R with GLUT5 may indicate concomitance effects in colorectal lamina propria areas.


Assuntos
Colite Ulcerativa/imunologia , Colo/imunologia , Doença de Crohn/imunologia , Mucosa Intestinal/imunologia , Leptina/imunologia , Receptores para Leptina/imunologia , Adulto , Estudos de Casos e Controles , Colo/citologia , Feminino , Transportador de Glucose Tipo 5/imunologia , Humanos , Mucosa Intestinal/citologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
7.
Pharmacol Res ; 158: 104863, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32407957

RESUMO

Neural stem cell (NSC) neuronal differentiation requires a metabolic shift towards oxidative phosphorylation. We now show that a branched-chain amino acids-driven, persistent metabolic shift toward energy metabolism is required for full neuronal maturation. We increased energy metabolism of differentiating neurons derived both from murine NSCs and human induced pluripotent stem cells (iPSCs) by supplementing the cell culture medium with a mixture composed of branched-chain amino acids, essential amino acids, TCA cycle precursors and co-factors. We found that treated differentiating neuronal cells with enhanced energy metabolism increased: i) total dendritic length; ii) the mean number of branches and iii) the number and maturation of the dendritic spines. Furthermore, neuronal spines in treated neurons appeared more stable with stubby and mushroom phenotype and with increased expression of molecules involved in synapse formation. Treated neurons modified their mitochondrial dynamics increasing the mitochondrial fusion and, consistently with the increase of cellular ATP content, they activated cellular mTORC1 dependent p70S6 K1 anabolism. Global transcriptomic analysis further revealed that treated neurons induce Nrf2 mediated gene expression. This was correlated with a functional increase in the Reactive Oxygen Species (ROS) scavenging mechanisms. In conclusion, persistent branched-chain amino acids-driven metabolic shift toward energy metabolism enhanced neuronal differentiation and antioxidant defences. These findings offer new opportunities to pharmacologically modulate NSC neuronal differentiation and to develop effective strategies for treating neurodegenerative diseases.


Assuntos
Aminoácidos de Cadeia Ramificada/farmacologia , Diferenciação Celular/fisiologia , Metabolismo Energético/efeitos dos fármacos , Células-Tronco Neurais/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/ultraestrutura , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neurogênese/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Sinapses/genética , Sinapses/fisiologia , Sinapses/ultraestrutura , Transcriptoma
8.
Brain Res ; 1714: 193-201, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30853627

RESUMO

Memory reconsolidation enables the update of a previously consolidated memory trace after its reactivation. Although Pavlovian memory reconsolidation has been widely demonstrated, instrumental memory reconsolidation is still debated. The most critical issue on instrumental memory reconsolidation findings have mainly been linked to the presence of specific boundary conditions for reactivation, for instance contextual parameters. In this study, we investigated the role of the spatial context on molecular markers of sucrose instrumental memory reactivation. Following withdrawal, rats previously conditioned to sucrose self-administration underwent either instrumental memory retrieval or no-retrieval in the conditioned context (Context A, AA condition) or in a modified version of the conditioned context (Context B, AB condition). Two hours later, the level of GluA1 and GluN2B receptors, Zif268 and phosphorylated-rpS6 (rpS6P) was measured in key brain areas for memory reactivation. Retrieval in Context A significantly increased GluA1Rs and GluN2BRs in amygdala compared to no-retrieval, indicating that memory successfully reactivated and destabilized. Moreover, Zif268 level was significantly increased after retrieval in Context A in the nucleus accumbens shell, central and basolateral amygdala but not in the hippocampus, while retrieval in Context B significantly increased Zif268 level in all brain areas. On the other hand, rpS6P level was increased in the nucleus accumbens shell and central amygdala, but decreased in the hippocampus, after retrieval in Context A, while retrieval in Context B did not change rpS6P level in brain areas, except for a small but significant decrease in hippocampus. While the increase of Zif268 level indicated that memory reactivation has been triggered in both the conditions, the lack of change in rpS6P levels after retrieval in Context B - in particular in the central amygdala - suggests that the reconsolidation process could not occur after memory reactivation in a context different from the conditioned one.


Assuntos
Consolidação da Memória/fisiologia , Memória/fisiologia , Animais , Complexo Nuclear Basolateral da Amígdala/metabolismo , Encéfalo/metabolismo , Núcleo Central da Amígdala/metabolismo , Condicionamento Clássico/fisiologia , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Masculino , Núcleo Accumbens/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteína S6 Ribossômica/metabolismo , Sacarose/metabolismo
9.
Neuroreport ; 29(8): 615-620, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29570499

RESUMO

Ketamine is a noncompetitive glutamate N-methyl-D-aspartic acid receptor antagonist. When acutely administered to rodents, it produces a rapid antidepressant effect. There is evidence that N-methyl-D-aspartic acid receptor blockade enhances glutamatergic transmission preferentially engaging α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors leading to mTOR (mammalian target of rapamycin) pathways activation, thus resulting into downstream neuroadaptive changes in limbic structures. Recent in-vitro data on primary neuronal cultures showed that ketamine activates mTOR also in dopaminergic neurons, and this activation depends on the presence of functional dopamine D3 receptors. The aim of this work was to study the in-vivo relevance of viable D3 receptors in mediating the effects of acute ketamine administration on the mTOR downstream substrate p70 ribosomal S6 kinase (p70S6K), an obligatory substrate for mTOR. We compared the effects of single ketamine 5 mg/kg, 10 mg/kg, or vehicle injection in wild-type and D3 receptor knockout mice. Animals were killed after 60 min, and their brains were processed for p-p70S6K immunohistochemistry. Ketamine increased p70S6K phosphorylation in prefrontal cortex, nucleus accumbens core and shell, ventral tegmental area, substantia nigra, hippocampal CA1, CA2, and CA3, and basolateral amygdala of wild-type mice but not in mutant mice. Our study demonstrates that ketamine-induced p70S6K phosphorylation is dependent on viable D3R expressed in most of limbic structures.


Assuntos
Antagonistas de Aminoácidos Excitatórios/farmacologia , Ketamina/farmacologia , Sistema Límbico/efeitos dos fármacos , Receptores de Dopamina D3/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Sistema Límbico/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Dopamina D3/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo
10.
Neurobiol Learn Mem ; 154: 87-96, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29397283

RESUMO

Metaplasticity, defined as the plasticity of synaptic plasticity, could affect learning and memory at different neural levels. It was hypothesized that metaplasticity changes on glutamate receptors may affect memory destabilization, promoting or preventing reconsolidation. We investigated the metaplastic effect of NMDA channel blocker MK-801 on sucrose instrumental memory reconsolidation in a behavioural rat model associated to the assessment of molecular markers of metaplasticity, memory retrieval, destabilization and reconsolidation. Following instrumental conditioning and forced abstinence, rats were intraperitoneally treated with MK-801 or vehicle 24 h before the exposure to memory retrieval or not-retrieval. Separate groups were tested for in-vivo extinction of responding (24 h and 7 d after reactivation) or ex-vivo assessment of transcription factor Zif268 and ribosomal protein rpS6 phosphorylation in nucleus accumbens (NAc) and amygdala (Amy). MK-801 significantly inhibited instrumental responding at extinction test, suggesting reconsolidation blockade of instrumental memory. The decrease of Zif268 and phosphorylated-rpS6 levels in NAc and Amy in MK-801/Retrieval vs. Vehicle/Retrieval group supported the behavioural findings. An increase of GluN2B, GluA1 and mGluR5 in NAc, and GluN2B in Amy, 24 h after MK-801 indicated the trigger of associated metaplastic changes. Our findings show that metaplastic changes induced by NMDA receptors blockade affected sucrose instrumental memory retrieval as shown by both behavioural and molecular changes. We hypothesize that these findings however suggested a switch to extinction rather than a reconsolidation.


Assuntos
Encéfalo/fisiologia , Condicionamento Operante/fisiologia , Consolidação da Memória/fisiologia , Plasticidade Neuronal , Receptores de N-Metil-D-Aspartato/fisiologia , Animais , Encéfalo/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Maleato de Dizocilpina/administração & dosagem , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Masculino , Consolidação da Memória/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Subunidades Proteicas/metabolismo , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Proteína S6 Ribossômica/metabolismo , Sacarose/administração & dosagem
11.
Mol Neurobiol ; 55(7): 5453-5461, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28948570

RESUMO

Modulation of αCaMKII expression and phosphorylation is a feature shared by drugs of abuse with different mechanisms of action. Accordingly, we investigated whether αCaMKII expression and activation could be altered by self-administration of ketamine, a non-competitive antagonist of the NMDA glutamate receptor, with antidepressant and psychotomimetic as well as reinforcing properties. Rats self-administered ketamine at a sub-anesthetic dose for 43 days and were sacrificed 24 h after the last drug exposure; reward-related brain regions, such as medial prefrontal cortex (PFC), ventral striatum (vS), and hippocampus (Hip), were used for the measurement of αCaMKII-mediated signaling. αCaMKII phosphorylation was increased in these brain regions suggesting that ketamine, similarly to other reinforcers, activates this kinase. We next measured the two main targets of αCaMKII, i.e., GluN2B (S1303) and GluA1 (S831), and found increased activation of GluN2B (S1303) together with reduced phosphorylation of GluA1 (S831). Since GluN2B, via inhibition of ERK, regulates the membrane expression of GluA1, we measured ERK2 phosphorylation in the crude synaptosomal fraction of these brain regions, which was significantly reduced suggesting that ketamine-induced phosphorylation of αCaMKII promotes GluN2B (S1303) phosphorylation that, in turn, inhibits ERK 2 signaling, an effect that results in reduced membrane expression and phosphorylation of GluA1. Taken together, our findings point to αCaMKII autophosphorylation as a critical signature of ketamine self-administration providing an intracellular mechanism to explain the different effects caused by αCaMKII autophosphorylation on the post-synaptic GluN2B- and GluA1-mediated functions. These data add ketamine to the list of drugs of abuse converging on αCaMKII to sustain their addictive properties.


Assuntos
Afeto , Encéfalo/enzimologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Ketamina/administração & dosagem , Recompensa , Afeto/efeitos dos fármacos , Animais , Encéfalo/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Ratos Sprague-Dawley , Autoadministração , Sinaptossomos/metabolismo
12.
Sci Rep ; 7(1): 9612, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28852041

RESUMO

Clinical and epidemiological data show that biological sex is one of the major determinants for the development and progression of cardiovascular disease (CVD). Impaired endothelial function, characterized by an imbalance in endothelial Nitric Oxide Synthase (eNOS) activity, precedes and accelerates the development of CVD. However, whether there is any sexual dimorphism in eNOS activity and function in endothelial cells (ECs) is still unknown. Here, by independently studying human male and female ECs, we found that female ECs expressed higher eNOS mRNA and protein levels both in vitro and ex vivo. The increased eNOS expression was associated to higher enzymatic activity and nitric oxide production. Pharmacological and genetic inhibition of eNOS affected migratory properties only in female ECs. In vitro angiogenesis experiments confirmed that sprouting mostly relied on eNOS-dependent migration in female ECs. At variance, capillary outgrowth from male ECs was independent of eNOS activity but required cell proliferation. In this study, we found sex-specific differences in the EC expression, activity, and function of eNOS. This intrinsic sexual dimorphism of ECs should be further evaluated to achieve more effective and precise strategies for the prevention and therapy of diseases associated to an impaired endothelial function such as CVD and pathological angiogenesis.


Assuntos
Células Endoteliais/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Animais , Movimento Celular , Proliferação de Células , Células Cultivadas , Ativação Enzimática , Feminino , Humanos , Masculino , Neovascularização Fisiológica , Óxido Nítrico/metabolismo , Fatores Sexuais , Cicatrização
13.
Sci Rep ; 7(1): 5083, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28698560

RESUMO

Clinical and experimental studies indicate that muscarinic acetylcholine receptors are potential pharmacological targets for the treatment of neurological diseases. Although these receptors have been described in human, bovine and rat cerebral microvascular tissue, a subtype functional characterization in mouse brain endothelium is lacking. Here, we show that all muscarinic acetylcholine receptors (M1-M5) are expressed in mouse brain microvascular endothelial cells. The mRNA expression of M2, M3, and M5 correlates with their respective protein abundance, but a mismatch exists for M1 and M4 mRNA versus protein levels. Acetylcholine activates calcium transients in brain endothelium via muscarinic, but not nicotinic, receptors. Moreover, although M1 and M3 are the most abundant receptors, only a small fraction of M1 is present in the plasma membrane and functions in ACh-induced Ca2+ signaling. Bioinformatic analyses performed on eukaryotic muscarinic receptors demonstrate a high degree of conservation of the orthosteric binding site and a great variability of the allosteric site. In line with previous studies, this result indicates muscarinic acetylcholine receptors as potential pharmacological targets in future translational studies. We argue that research on drug development should especially focus on the allosteric binding sites of the M1 and M3 receptors.


Assuntos
Encéfalo/irrigação sanguínea , Endotélio Vascular/metabolismo , Microvasos/metabolismo , Receptores Muscarínicos/metabolismo , Acetilcolina/farmacologia , Sítio Alostérico , Animais , Sítios de Ligação , Sinalização do Cálcio/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Camundongos Endogâmicos BALB C , Receptores Muscarínicos/química , Receptores Nicotínicos/metabolismo
14.
Mol Neurobiol ; 54(9): 7186-7193, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-27796754

RESUMO

Ketamine is a non-competitive antagonist of the NMDA glutamate receptor with psychotomimetic and reinforcing properties, although recent work has pointed out its antidepressant action following acute exposure. Our aim was to investigate the expression of crucial components of the glutamate synapse following chronic ketamine self-administration (S/A), focusing our attention on medial prefrontal cortex (mPFC) and hippocampus (Hip), two brain regions involved in compulsive drug-seeking and drug-related cognitive disorders. Rats self-administered ketamine at a sub-anesthetic dose for 5-6 weeks and were sacrificed 24 h after the last drug exposure. We found a general downregulation of glutamate receptor expression that was brain region-dependent. In fact, in the mPFC, we found reduced expression of NMDA receptor subunits, whereas AMPA receptor protein levels were reduced in Hip; of note, specific scaffolding proteins of NMDA and AMPA receptors were also reduced in mPFC and Hip, respectively. Moreover, the metabotropic mGluR5 receptor was similarly downregulated in these brain regions. These findings reveal a dynamic impairment of glutamate homeostasis in the mPFC and Hip that may represent a signature of long-term exposure to ketamine S/A. Further, this decrement, similarly observed in humans and animal models of schizophrenia may represent a specific feature of the human disease endophenotype.


Assuntos
Encéfalo/metabolismo , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Ácido Glutâmico/metabolismo , Homeostase/fisiologia , Ketamina/administração & dosagem , Sinapses/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/toxicidade , Homeostase/efeitos dos fármacos , Ketamina/toxicidade , Masculino , Ratos , Ratos Sprague-Dawley , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Autoadministração , Sinapses/efeitos dos fármacos
15.
Pharmacol Res ; 104: 22-30, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26706783

RESUMO

Ketamine is a drug of abuse with a unique profile, which besides its inherent mechanism of action as a non-competitive antagonist of the NMDA glutamate receptor, displays both antidepressant and reinforcing properties. The major aim of our study was to find a molecular signature of ketamine that may help in discriminating between its reinforcing and antidepressant effects. To this end, we focused our attention on BDNF, a neurotrophin that has been shown to play a role in both antidepressant and reinforcing properties of several drugs. Rats were exposed to self-administer intravenous (IV) ketamine (S/A) for 43 days or to receive a single IV ketamine 0.5mg/kg, or vehicle infusion. Although the dose we employed is lower than that reported by the literature, it however yields Cmax values that correspond to those achieved in humans after antidepressant treatment. Our results show that while the single infusion of ketamine increased the neurotrophin expression in the hippocampus while reducing it in the ventral striatum, a feature shared with other antidepressants, the repeated self-administration reduced mBDNF expression and its downstream signalling in both ventral striatum and hippocampus. Further, we here show that phosphorylation of Akt is oppositely regulated by ketamine, pointing to this pathway as central to the different actions of the drug. Taken together, we here point to BDNF and its downstream signalling pathway as a finely tuned mechanism whose modulation might subserve the different features of ketamine.


Assuntos
Antidepressivos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Ketamina/farmacologia , Reforço Psicológico , Animais , Antidepressivos/administração & dosagem , Encéfalo/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Infusões Intravenosas , Ketamina/administração & dosagem , Masculino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Autoadministração , Transdução de Sinais
16.
Clin Sci (Lond) ; 130(3): 167-81, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26527739

RESUMO

Mitochondrial disorders are heterogeneous multisystemic disorders due to impaired oxidative phosphorylation causing defective mitochondrial energy production. Common histological hallmarks of mitochondrial disorders are RRFs (ragged red fibres), muscle fibres with abnormal focal accumulations of mitochondria. In contrast with the growing understanding of the genetic basis of mitochondrial disorders, the fate of phenotypically affected muscle fibres remains largely unknown. We investigated PCD (programmed cell death) in muscle of 17 patients with mitochondrial respiratory chain dysfunction. We documented that in affected muscle fibres, nuclear chromatin is condensed in lumpy irregular masses and cytochrome c is released into the cytosol to activate, along with Apaf-1 (apoptotic protease-activating factor 1), caspase 9 that, in turn, activates effector caspase 3, caspase 6, and caspase 7, suggesting the execution of the intrinsic apoptotic pathway. Whereas active caspase 3 underwent nuclear translocation, AIF (apoptosis-inducing factor) mainly stayed within mitochondria, into which an up-regulated Bax is relocated. The significant increase in caspase 2, caspase 3 and caspase 6 activity strongly suggest that the cell death programme is caspase-dependent and the activation of caspase 2 together with PUMA (p53 up-regulated modulator of apoptosis) up-regulation point to a role for oxidative stress in triggering the intrinsic pathway. Concurrently, in muscle of patients, the number of satellite cells was significantly increased and myonuclei were detected at different stages of myogenic differentiation, indicating that a reparative programme is ongoing in muscle of patients with mitochondrial disorders. Together, these data suggest that, in patients with mitochondrial disorders, affected muscle fibres are trapped in a mitochondria-regulated caspase-dependent PCD while repairing events take place.


Assuntos
Apoptose , Caspases/metabolismo , Doenças Mitocondriais/fisiopatologia , Fibras Musculares Esqueléticas/fisiologia , Estudos de Casos e Controles , Humanos , Doenças Mitocondriais/enzimologia
17.
Front Cell Neurosci ; 9: 383, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26483637

RESUMO

Brain and skull developments are tightly synchronized, allowing the cranial bones to dynamically adapt to the brain shape. At the brain-skull interface, meninges produce the trophic signals necessary for normal corticogenesis and bone development. Meninges harbor different cell populations, including cells forming the endosteum of the cranial vault. Recently, we and other groups have described the presence in meninges of a cell population endowed with neural differentiation potential in vitro and, after transplantation, in vivo. However, whether meninges may be a niche for neural progenitor cells during embryonic development and in adulthood remains to be determined. In this work we provide the first description of the distribution of neural precursor markers in rat meninges during development up to adulthood. We conclude that meninges share common properties with the classical neural stem cell niche, as they: (i) are a highly proliferating tissue; (ii) host cells expressing neural precursor markers such as nestin, vimentin, Sox2 and doublecortin; and (iii) are enriched in extracellular matrix components (e.g., fractones) known to bind and concentrate growth factors. This study underlines the importance of meninges as a potential niche for endogenous precursor cells during development and in adulthood.

18.
J Neurol Sci ; 345(1-2): 239-43, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25130930

RESUMO

Tacrolimus, also known as FK506, is an immunosuppressive agent widely used for the prevention of acute allograft rejection in organ transplantation and for the treatment of immunological diseases. This study reports two male patients who underwent solid organ transplantation (liver and kidney). After transplant, the patients received continuous immunosuppressive therapy with oral tacrolimus and later presented clinical manifestations and laboratory signs of myopathy. Muscle biopsies of both patients clearly documented an inflammatory myopathy with the histological features of polymyositis including CD8+ T cells which invaded healthy muscle fibers and expressed granzyme B and perforin, many CD68+ macrophages and MHC class I antigen upregulation on the surface of most fibers. Because of the temporal association while receiving tacrolimus and since other possible causes for myopathy were excluded, the most likely cause of polymyositis in our patients was tacrolimus toxicity. We suggest that patients on tacrolimus should be carefully monitored for serum CK levels and clinical signs of muscle disease.


Assuntos
Imunossupressores/uso terapêutico , Transplante de Órgãos/métodos , Polimiosite/tratamento farmacológico , Polimiosite/cirurgia , Tacrolimo/uso terapêutico , ADP-Ribosil Ciclase 1 , Antígenos CD , Antígenos de Diferenciação Mielomonocítica , Biópsia , Humanos , Masculino , Pessoa de Meia-Idade , Músculos/metabolismo , Músculos/patologia
20.
Mol Cell Proteomics ; 10(4): M110.002964, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21156839

RESUMO

Mitochondrial diseases (MD) are heterogeneous disorders because of impairment of respiratory chain function leading to oxidative stress. We hypothesized that in MD the vascular endothelium may be affected by increased oxidative/nitrative stress causing a reduction of nitric oxide availability. We therefore, investigated the pathobiology of vasculature in MD patients by assaying the presence of 3-nitrotyrosine in muscle biopsies followed by the proteomic identification of proteins which undergo tyrosine nitration. We then measured the flow-mediated vasodilatation as a proof of altered nitric oxide generation/bioactivity. Here, we show that 3-nitrotyrosine staining is specifically located in the small vessels of muscle tissue and that the reaction is stronger and more evident in a significant percentage of vessels from MD patients as compared with controls. Eleven specific proteins which are nitrated under pathological conditions were identified; most of them are involved in energy metabolism and are located mainly in mitochondria. In MD patients the flow-mediated vasodilatation was reduced whereas baseline arterial diameters, blood flow velocity and endothelium-independent vasodilatation were similar to controls. The present results provide evidence that in MD the vessel wall is a target of increased oxidative/nitrative stress.


Assuntos
Síndrome MELAS/metabolismo , Síndrome MERRF/metabolismo , Músculo Esquelético/irrigação sanguínea , Tirosina/análogos & derivados , Adolescente , Adulto , Idoso , Sequência de Bases , Artéria Braquial/fisiopatologia , Estudos de Casos e Controles , Surdez/genética , Surdez/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Endotélio Vascular/metabolismo , Feminino , Artéria Femoral/fisiopatologia , Humanos , Síndrome de Kearns-Sayre/genética , Síndrome de Kearns-Sayre/metabolismo , Síndrome MELAS/genética , Síndrome MERRF/genética , Masculino , Pessoa de Meia-Idade , Doenças Mitocondriais , Músculo Esquelético/metabolismo , Músculo Liso Vascular/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Mutação Puntual , Deleção de Sequência , Tirosina/metabolismo , Vasodilatação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...