Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Front Pediatr ; 12: 1279112, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38659694

RESUMO

New technologies in genetic diagnostics have revolutionized the understanding and management of rare diseases. This review highlights the significant advances and latest developments in genetic diagnostics in inborn errors of immunity (IEI), which encompass a diverse group of disorders characterized by defects in the immune system, leading to increased susceptibility to infections, autoimmunity, autoinflammatory diseases, allergies, and malignancies. Various diagnostic approaches, including targeted gene sequencing panels, whole exome sequencing, whole genome sequencing, RNA sequencing, or proteomics, have enabled the identification of causative genetic variants of rare diseases. These technologies not only facilitated the accurate diagnosis of IEI but also provided valuable insights into the underlying molecular mechanisms. Emerging technologies, currently mainly used in research, such as optical genome mapping, single cell sequencing or the application of artificial intelligence will allow even more insights in the aetiology of hereditary immune defects in the near future. The integration of genetic diagnostics into clinical practice significantly impacts patient care. Genetic testing enables early diagnosis, facilitating timely interventions and personalized treatment strategies. Additionally, establishing a genetic diagnosis is necessary for genetic counselling and prognostic assessments. Identifying specific genetic variants associated with inborn errors of immunity also paved the way for the development of targeted therapies and novel therapeutic approaches. This review emphasizes the challenges related with genetic diagnosis of rare diseases and provides future directions, specifically focusing on IEI. Despite the tremendous progress achieved over the last years, several obstacles remain or have become even more important due to the increasing amount of genetic data produced for each patient. This includes, first and foremost, the interpretation of variants of unknown significance (VUS) in known IEI genes and of variants in genes of unknown significance (GUS). Although genetic diagnostics have significantly contributed to the understanding and management of IEI and other rare diseases, further research, exchange between experts from different clinical disciplines, data integration and the establishment of comprehensive guidelines are crucial to tackle the remaining challenges and maximize the potential of genetic diagnostics in the field of rare diseases, such as IEI.

2.
Elife ; 122024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446501

RESUMO

Various heterozygous cytoskeletal γ-actin mutations have been shown to cause Baraitser-Winter cerebrofrontofacial syndrome, non-syndromic hearing loss, or isolated eye coloboma. Here, we report the biochemical characterization of human cytoskeletal γ-actin carrying mutation E334Q, a mutation that leads to a hitherto unspecified non-muscle actinopathy. Following expression, purification, and removal of linker and thymosin ß4 tag sequences, the p.E334Q monomers show normal integration into linear and branched actin filaments. The mutation does not affect thermal stability, actin filament nucleation, elongation, and turnover. Model building and normal mode analysis predict significant differences in the interaction of p.E334Q filaments with myosin motors and members of the ADF/cofilin family of actin-binding proteins. Assays probing the interactions of p.E334Q filaments with human class 2 and class 5 myosin motor constructs show significant reductions in sliding velocity and actin affinity. E334Q differentially affects cofilin-mediated actin dynamics by increasing the rate of cofilin-mediated de novo nucleation of actin filaments and decreasing the efficiency of cofilin-mediated filament severing. Thus, it is likely that p.E334Q-mediated changes in myosin motor activity, as well as filament turnover, contribute to the observed disease phenotype.


Assuntos
Fatores de Despolimerização de Actina , Actinas , Humanos , Fatores de Despolimerização de Actina/genética , Citoesqueleto de Actina , Miosinas , Mutação
3.
Am J Hum Genet ; 110(7): 1068-1085, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37352860

RESUMO

ERI1 is a 3'-to-5' exoribonuclease involved in RNA metabolic pathways including 5.8S rRNA processing and turnover of histone mRNAs. Its biological and medical significance remain unclear. Here, we uncover a phenotypic dichotomy associated with bi-allelic ERI1 variants by reporting eight affected individuals from seven unrelated families. A severe spondyloepimetaphyseal dysplasia (SEMD) was identified in five affected individuals with missense variants but not in those with bi-allelic null variants, who showed mild intellectual disability and digital anomalies. The ERI1 missense variants cause a loss of the exoribonuclease activity, leading to defective trimming of the 5.8S rRNA 3' end and a decreased degradation of replication-dependent histone mRNAs. Affected-individual-derived induced pluripotent stem cells (iPSCs) showed impaired in vitro chondrogenesis with downregulation of genes regulating skeletal patterning. Our study establishes an entity previously unreported in OMIM and provides a model showing a more severe effect of missense alleles than null alleles within recessive genotypes, suggesting a key role of ERI1-mediated RNA metabolism in human skeletal patterning and chondrogenesis.


Assuntos
Exorribonucleases , Histonas , Humanos , Exorribonucleases/genética , Histonas/genética , Mutação de Sentido Incorreto/genética , RNA Ribossômico 5,8S , RNA , RNA Mensageiro/genética
4.
Am J Hum Genet ; 110(5): 774-789, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37054711

RESUMO

The Integrator complex is a multi-subunit protein complex that regulates the processing of nascent RNAs transcribed by RNA polymerase II (RNAPII), including small nuclear RNAs, enhancer RNAs, telomeric RNAs, viral RNAs, and protein-coding mRNAs. Integrator subunit 11 (INTS11) is the catalytic subunit that cleaves nascent RNAs, but, to date, mutations in this subunit have not been linked to human disease. Here, we describe 15 individuals from 10 unrelated families with bi-allelic variants in INTS11 who present with global developmental and language delay, intellectual disability, impaired motor development, and brain atrophy. Consistent with human observations, we find that the fly ortholog of INTS11, dIntS11, is essential and expressed in the central nervous systems in a subset of neurons and most glia in larval and adult stages. Using Drosophila as a model, we investigated the effect of seven variants. We found that two (p.Arg17Leu and p.His414Tyr) fail to rescue the lethality of null mutants, indicating that they are strong loss-of-function variants. Furthermore, we found that five variants (p.Gly55Ser, p.Leu138Phe, p.Lys396Glu, p.Val517Met, and p.Ile553Glu) rescue lethality but cause a shortened lifespan and bang sensitivity and affect locomotor activity, indicating that they are partial loss-of-function variants. Altogether, our results provide compelling evidence that integrity of the Integrator RNA endonuclease is critical for brain development.


Assuntos
Proteínas de Drosophila , Doenças do Sistema Nervoso , Adulto , Animais , Humanos , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Mutação/genética , RNA Mensageiro
5.
Hum Mol Genet ; 32(9): 1457-1465, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36458889

RESUMO

Mosaic variants in the PIK3CA gene, encoding the catalytic subunit of phosphoinositide 3-kinase (PI3K), produce constitutive PI3K activation, which causes PIK3CA-related overgrowth spectrum disorders. To date, fewer than 20 patients have been described with germline alterations in PIK3CA. In this study, we describe three unrelated individuals with overgrowth and germline PIK3CA variants. These variants were discovered through whole-exome sequencing and confirmed as germline by testing multiple tissue types, when available. Functional analysis using Patient 1's fibroblast cell line and two previously reported patients' cell lines showed increased phosphorylation of AKT during cellular starvation revealing constitutive activation of the phosphoinositide-3-kinase/protein kinase B/mechanistic target of rapamycin (PI3K/AKT/mTOR) pathway. Alternatively, stimulation of the cells by fetal bovine serum produced a reduced response, indicating an activated status of the PI3K complex reducing the pathway response to further external stimulation. Additional studies utilizing Biolog Phenotype Microarray technology indicated reduced energy production when cells were exposed to growth factors stimulating the PI3K/AKT/mTOR pathway, confirming the trend observed in the AKT phosphorylation test after stimulation. Furthermore, treatment with inhibitors of the PI3K/AKT/mTOR pathway rescued the normal energy response in the patients' cells. Collectively, these data demonstrate that disease-causing germline PIK3CA variants have a functional consequence, similar to mosaic variants in the PI3K/AKT/mTOR pathway.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases , Doenças Genéticas Inatas , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Células Germinativas/metabolismo , Mutação , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Doenças Genéticas Inatas/fisiopatologia , Mutação em Linhagem Germinativa , Fosforilação
6.
Clin Genet ; 103(2): 226-230, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36189577

RESUMO

NSD2 dimethylates histone H3 at lysine 36 (H3K36me2) and is located in the Wolf-Hirschhorn syndrome (WHS) critical region. Recent descriptions have delineated loss-of-function (LoF) variants in NSD2 with a distinct disorder. The oncogenic missense variant p.Glu1099Lys occurs somatically in leukemia and has a gain-of-function (GoF) effect. We describe two individuals carrying p.Glu1099Lys as heterozygous de novo germline variant identified by exome sequencing (ES) of blood DNA and subsequently confirmed in two ectodermal tissues. Clinically, these individuals are characterized by intellectual disability, coarse/ square facial gestalt, abnormalities of the hands, and organomegaly. Public cell lines with NSD2 GoF variants had increased K36me2, DNA promoter methylation, and dysregulated RNA expression. NSD2 GoF caused by p.Glu1099Lys is associated with a novel phenotype different from WHS and Rauch-Steindl syndrome (RAUST).


Assuntos
Proteínas Repressoras , Síndrome de Wolf-Hirschhorn , Humanos , Proteínas Repressoras/genética , Mutação com Ganho de Função , Histonas/genética , Histonas/metabolismo , Síndrome de Wolf-Hirschhorn/genética , DNA
7.
Brain ; 145(9): 3274-3287, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35769015

RESUMO

Reelin, a large extracellular protein, plays several critical roles in brain development and function. It is encoded by RELN, first identified as the gene disrupted in the reeler mouse, a classic neurological mutant exhibiting ataxia, tremors and a 'reeling' gait. In humans, biallelic variants in RELN have been associated with a recessive lissencephaly variant with cerebellar hypoplasia, which matches well with the homozygous mouse mutant that has abnormal cortical structure, small hippocampi and severe cerebellar hypoplasia. Despite the large size of the gene, only 11 individuals with RELN-related lissencephaly with cerebellar hypoplasia from six families have previously been reported. Heterozygous carriers in these families were briefly reported as unaffected, although putative loss-of-function variants are practically absent in the population (probability of loss of function intolerance = 1). Here we present data on seven individuals from four families with biallelic and 13 individuals from seven families with monoallelic (heterozygous) variants of RELN and frontotemporal or temporal-predominant lissencephaly variant. Some individuals with monoallelic variants have moderate frontotemporal lissencephaly, but with normal cerebellar structure and intellectual disability with severe behavioural dysfunction. However, one adult had abnormal MRI with normal intelligence and neurological profile. Thorough literature analysis supports a causal role for monoallelic RELN variants in four seemingly distinct phenotypes including frontotemporal lissencephaly, epilepsy, autism and probably schizophrenia. Notably, we observed a significantly higher proportion of loss-of-function variants in the biallelic compared to the monoallelic cohort, where the variant spectrum included missense and splice-site variants. We assessed the impact of two canonical splice-site variants observed as biallelic or monoallelic variants in individuals with moderately affected or normal cerebellum and demonstrated exon skipping causing in-frame loss of 46 or 52 amino acids in the central RELN domain. Previously reported functional studies demonstrated severe reduction in overall RELN secretion caused by heterozygous missense variants p.Cys539Arg and p.Arg3207Cys associated with lissencephaly suggesting a dominant-negative effect. We conclude that biallelic variants resulting in complete absence of RELN expression are associated with a consistent and severe phenotype that includes cerebellar hypoplasia. However, reduced expression of RELN remains sufficient to maintain nearly normal cerebellar structure. Monoallelic variants are associated with incomplete penetrance and variable expressivity even within the same family and may have dominant-negative effects. Reduced RELN secretion in heterozygous individuals affects only cortical structure whereas the cerebellum remains intact. Our data expand the spectrum of RELN-related neurodevelopmental disorders ranging from lethal brain malformations to adult phenotypes with normal brain imaging.


Assuntos
Lisencefalia , Proteína Reelina , Adulto , Cerebelo/anormalidades , Criança , Deficiências do Desenvolvimento/genética , Humanos , Lisencefalia/complicações , Mutação , Malformações do Sistema Nervoso , Proteína Reelina/genética
8.
Eur J Cell Biol ; 101(2): 151216, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35313204

RESUMO

Heterozygous dominant mutations in the ubiquitously produced cytoskeletal ß-actin isoform lead to a broad range of human disease phenotypes, which are currently classified as three distinct clinical entities termed Baraitser-Winter-Cerebrofrontofacial syndrome (BWCFF), ACTB-associated pleiotropic malformation syndrome with intellectual disability (ACTB-PMSID), and ACTB-associated syndromic thrombocytopenia (ACTB-AST). The latter two are distinguishable from BWCFF by the presence of milder craniofacial features and less pronounced developmental abnormalities, or the absence of craniofacial features in combination with a characteristic thrombocytopenia with platelet anisotropy. Production and correct function of ß-actin is required for multiple essential processes in all types of cells. Directed cell migration, cytokinesis and morphogenesis are amongst the functions that are supported by ß-actin. Here we report the recombinant production and biochemical characterization of the ACTB-AST mutant p.S368fs, resulting in an altered sequence in the C-terminal region of ß-actin that includes a replacement of the last 8 residues and an elongation of the molecule by 4 residues. The mutation affects a region important for actin polymerization and actin-profilin interaction. Accordingly, we measured markedly reduced rates of nucleation and polymerization during spontaneous actin assembly and lower affinity of p.S368fs for human profilin-1. The reduced affinity is also reflected in the lower propensity of profilin-1 to extend the nucleation phase of p.S368fs. While localized in close proximity to actin-cofilin and actin-myosin interfaces, we determined only minor effects of the mutation on the interaction of mutant filaments with cofilin and myosin family members. However, allosteric effects on sites distant from the mutation manifest themselves in a 7.9 °C reduction in thermal denaturation temperature, a 2-fold increase in the observed IC50 for DNase-I, and changes in nucleotide exchange kinetics. Our results support a disease mechanism involving impaired actin dynamics and function through disruption of actin-profilin interactions and further exacerbated by allosteric perturbations.


Assuntos
Actinas , Mutação da Fase de Leitura , Síndrome , Trombocitopenia , Fatores de Despolimerização de Actina/genética , Actinas/genética , Anormalidades Craniofaciais , Epilepsia , Fácies , Humanos , Deficiência Intelectual , Lisencefalia , Mutação , Miosinas/genética , Profilinas/genética , Trombocitopenia/genética
9.
Eur J Paediatr Neurol ; 37: 166, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35246379
10.
Eur J Paediatr Neurol ; 37: 123-128, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35228169

RESUMO

Malformations of cortical development (MCDs) are a major source of morbidity and mortality in the pediatric patient cohort. Correct diagnosis of the cause is essential for symptom management, disease prognosis and family counselling but is frequently hampered due to numerous potential pitfalls in the diagnostic process. This review highlights potential problems that either prevent the establishment of a diagnosis or are the sources of diagnostic errors. The focus is placed on hereditary causes of MCDs and strategies will be proposed to circumvent potential diagnostic pitfalls. Errors may occur during variant detection, filtering, or interpretation in relation to patient's phenotype. Based on detailed clinical assessment suitable targeted and untargeted methods to identify pathogenic variants with context-dependent filtering and evaluation approaches will be discussed.


Assuntos
Malformações do Desenvolvimento Cortical , Criança , Estudos de Coortes , Humanos , Malformações do Desenvolvimento Cortical/diagnóstico , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/patologia , Fenótipo
11.
Eur J Paediatr Neurol ; 35: 147-152, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34731701

RESUMO

Lissencephaly represents a spectrum of rare malformations of cortical development including agyria, pachygyria and subcortical band heterotopia. The progress in molecular genetics has led to identification of 31 lissencephaly-associated genes with the overall diagnostic yield over 80%. In this review, we focus on clinical and molecular diagnosis of lissencephaly and summarize the current knowledge on histopathological changes and their correlation with the MRI imaging. Additionally we provide the overview of clinical follow-up recommendations and available data on epilepsy management in patients with lissencephaly.


Assuntos
Lissencefalias Clássicas e Heterotopias Subcorticais em Banda , Epilepsia , Lisencefalia , Córtex Cerebral , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/diagnóstico por imagem , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/genética , Humanos , Lisencefalia/diagnóstico por imagem , Lisencefalia/genética , Imageamento por Ressonância Magnética , Mutação
12.
Am J Med Genet A ; 185(9): 2719-2738, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34087052

RESUMO

Cyclin D2 (CCND2) is a critical cell cycle regulator and key member of the cyclin D2-CDK4 (DC) complex. De novo variants of CCND2 clustering in the distal part of the protein have been identified as pathogenic causes of brain overgrowth (megalencephaly, MEG) and severe cortical malformations in children including the megalencephaly-polymicrogyria-polydactyly-hydrocephalus (MPPH) syndrome. Megalencephaly-associated CCND2 variants are localized to the terminal exon and result in accumulation of degradation-resistant protein. We identified five individuals from three unrelated families with novel variants in the proximal region of CCND2 associated with microcephaly, mildly simplified cortical gyral pattern, symmetric short stature, and mild developmental delay. Identified variants include de novo frameshift variants and a dominantly inherited stop-gain variant segregating with the phenotype. This is the first reported association between proximal CCND2 variants and microcephaly, to our knowledge. This series expands the phenotypic spectrum of CCND2-related disorders and suggests that distinct classes of CCND2 variants are associated with reciprocal effects on human brain growth (microcephaly and megalencephaly due to possible loss or gain of protein function, respectively), adding to the growing paradigm of inverse phenotypes due to dysregulation of key brain growth genes.


Assuntos
Encéfalo/anormalidades , Ciclina D2/genética , Hidrocefalia/patologia , Megalencefalia/patologia , Mutação , Polidactilia/patologia , Polimicrogiria/patologia , Adolescente , Adulto , Criança , Feminino , Humanos , Hidrocefalia/genética , Lactente , Masculino , Megalencefalia/genética , Polidactilia/genética , Polimicrogiria/genética
13.
Stem Cell Res ; 53: 102259, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33640691

RESUMO

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a severe inheritable cardiac disorder, which is characterized by life-threatening cardiac arrhythmias, syncope, seizures, or sudden cardiac death in response to physical exercise or emotional stress. This inherited disease is predominantly caused by mutations in the ryanodine receptor type 2 (RYR2). To minimize the cell line variations for disease modeling, we generated two induced pluripotency stem cell lines (hiPSCs: isCPVTA2254V1-2 and isCPVTA2254V1-3) from skin fibroblasts of one CPVT patient carrying the p.A2254V mutation using CytoTune2.0 Sendai virus cocktail for non-integration reprogramming. All generated iPSCs maintained pluripotency, normal karyotype, and spontaneous in vivo and in vitro differentiation capacity.


Assuntos
Células-Tronco Pluripotentes Induzidas , Taquicardia Ventricular , Humanos , Mutação/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Taquicardia Ventricular/genética
14.
Genet Med ; 23(4): 661-668, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33420346

RESUMO

PURPOSE: To identify novel genes associated with intellectual disability (ID) in four unrelated families. METHODS: Here, through exome sequencing and international collaboration, we report eight individuals from four unrelated families of diverse geographic origin with biallelic loss-of-function variants in UBE4A. RESULTS: Eight evaluated individuals presented with syndromic intellectual disability and global developmental delay. Other clinical features included hypotonia, short stature, seizures, and behavior disorder. Characteristic features were appreciated in some individuals but not all; in some cases, features became more apparent with age. We demonstrated that UBE4A loss-of-function variants reduced RNA expression and protein levels in clinical samples. Mice generated to mimic patient-specific Ube4a loss-of-function variant exhibited muscular and neurological/behavioral abnormalities, some of which are suggestive of the clinical abnormalities seen in the affected individuals. CONCLUSION: These data indicate that biallelic loss-of-function variants in UBE4A cause a novel intellectual disability syndrome, suggesting that UBE4A enzyme activity is required for normal development and neurological function.


Assuntos
Nanismo , Deficiência Intelectual , Ubiquitina-Proteína Ligases/genética , Animais , Criança , Deficiências do Desenvolvimento/genética , Humanos , Deficiência Intelectual/genética , Camundongos , Hipotonia Muscular , Fenótipo , Síndrome , Sequenciamento do Exoma
15.
Am J Med Genet A ; 182(12): 3040-3047, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33026187

RESUMO

Congenital hiatal hernia (HH) is a rare congenital defect and is often described on a sporadic basis, but familial cases have also been reported. The mechanism of development is not well understood, and to our knowledge no specific genetic factors have been implicated to date. We report on seven individuals from two families with 9q22 duplication, who have variably associated features including congenital HH in four individuals. One family had an 1.09 Mb 9q22 duplication, and the other family had an overlapping 2.73 Mb 9q22 duplication. We review the genes in this region and discuss BARX1 (BarH-like homeobox gene 1) as a gene of interest.


Assuntos
Duplicação Cromossômica , Cromossomos Humanos Par 9/genética , Hérnia Hiatal/patologia , Proteínas de Homeodomínio/genética , Mutação , Fatores de Transcrição/genética , Adolescente , Pré-Escolar , Feminino , Hérnia Hiatal/congênito , Hérnia Hiatal/genética , Humanos , Lactente , Recém-Nascido , Masculino , Linhagem
17.
Nat Rev Neurol ; 16(11): 618-635, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32895508

RESUMO

Malformations of cortical development (MCDs) are neurodevelopmental disorders that result from abnormal development of the cerebral cortex in utero. MCDs place a substantial burden on affected individuals, their families and societies worldwide, as these individuals can experience lifelong drug-resistant epilepsy, cerebral palsy, feeding difficulties, intellectual disability and other neurological and behavioural anomalies. The diagnostic pathway for MCDs is complex owing to wide variations in presentation and aetiology, thereby hampering timely and adequate management. In this article, the international MCD network Neuro-MIG provides consensus recommendations to aid both expert and non-expert clinicians in the diagnostic work-up of MCDs with the aim of improving patient management worldwide. We reviewed the literature on clinical presentation, aetiology and diagnostic approaches for the main MCD subtypes and collected data on current practices and recommendations from clinicians and diagnostic laboratories within Neuro-MIG. We reached consensus by 42 professionals from 20 countries, using expert discussions and a Delphi consensus process. We present a diagnostic workflow that can be applied to any individual with MCD and a comprehensive list of MCD-related genes with their associated phenotypes. The workflow is designed to maximize the diagnostic yield and increase the number of patients receiving personalized care and counselling on prognosis and recurrence risk.


Assuntos
Consenso , Técnica Delphi , Internacionalidade , Malformações do Desenvolvimento Cortical/diagnóstico , Guias de Prática Clínica como Assunto/normas , Testes Diagnósticos de Rotina/métodos , Testes Diagnósticos de Rotina/normas , Humanos , Malformações do Desenvolvimento Cortical/epidemiologia
18.
J Hum Genet ; 65(11): 1003-1017, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32788638

RESUMO

Mutations in the cytoplasmic dynein 1 heavy chain gene (DYNC1H1) have been identified in rare neuromuscular (NMD) and neurodevelopmental (NDD) disorders such as spinal muscular atrophy with lower extremity dominance (SMALED) and autosomal dominant mental retardation syndrome 13 (MRD13). Phenotypes and genotypes of ten pediatric patients with pathogenic DYNC1H1 variants were analyzed in a multi-center study. Data mining of large-scale genomic variant databases was used to investigate domain-specific vulnerability and conservation of DYNC1H1. We identified ten patients with nine novel mutations in the DYNC1H1 gene. These patients exhibit a broad spectrum of clinical findings, suggesting an overlapping disease manifestation with intermixed phenotypes ranging from neuropathy (peripheral nervous system, PNS) to severe intellectual disability (central nervous system, CNS). Genomic profiling of healthy and patient variant datasets underlines the domain-specific effects of genetic variation in DYNC1H1, specifically on toleration towards missense variants in the linker domain. A retrospective analysis of all published mutations revealed domain-specific genotype-phenotype correlations, i.e., mutations in the dimerization domain with reductions in lower limb strength in DYNC1H1-NMD and motor domain with cerebral malformations in DYNC1H1-NDD. We highlight that the current classification into distinct disease entities does not sufficiently reflect the clinical disease manifestation that clinicians face in the diagnostic work-up of DYNC1H1-related disorders. We propose a novel clinical classification for DYNC1H1-related disorders encompassing a spectrum from DYNC1H1-NMD with an exclusive PNS phenotype to DYNC1H1-NDD with concomitant CNS involvement.


Assuntos
Encéfalo/diagnóstico por imagem , Dineínas do Citoplasma/genética , Genômica , Atrofia Muscular Espinal/genética , Encéfalo/anormalidades , Encéfalo/patologia , Análise Mutacional de DNA , Feminino , Humanos , Lactente , Extremidade Inferior/diagnóstico por imagem , Extremidade Inferior/patologia , Deformidades Congênitas das Extremidades Inferiores/diagnóstico por imagem , Deformidades Congênitas das Extremidades Inferiores/genética , Deformidades Congênitas das Extremidades Inferiores/patologia , Masculino , Atrofia Muscular Espinal/classificação , Atrofia Muscular Espinal/diagnóstico por imagem , Atrofia Muscular Espinal/patologia , Mutação de Sentido Incorreto/genética , Fenótipo
19.
Eur J Med Genet ; 63(10): 104019, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32712214

RESUMO

Bosch-Boonstra-Schaaf optic atrophy syndrome (BBSOAS) has been described as an autosomal-dominant disorder caused by mutations in the NR2F1 gene, whose common characteristics include developmental delay, intellectual disability, optic nerve atrophy, hypotonia, attention deficit disorder, autism spectrum disorder, seizures, hearing defects, spasticity and thinning of the corpus callosum. Missense mutations in NR2F1 have been reported to be the major cause of BBSOAS. A possible genotype-phenotype correlation has been considered with missense mutations affecting the ligand-binding domain of NR2F1 as well as whole-gene deletions of NR2F1 showing a milder phenotype of BBSOAS. Here we report on a patient with a novel frameshift mutation in NR2F1 showing the full spectrum of BBOAS indicating an expanded clinical spectrum and a reconsideration of the observed genotype-phenotype correlation.


Assuntos
Transtorno do Espectro Autista/genética , Fator I de Transcrição COUP/genética , Deficiência Intelectual/genética , Atrofias Ópticas Hereditárias/genética , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/fisiopatologia , Sequência de Bases , Criança , Mutação da Fase de Leitura , Estudos de Associação Genética , Humanos , Deficiência Intelectual/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Hipotonia Muscular/genética , Mutação de Sentido Incorreto , Atrofias Ópticas Hereditárias/diagnóstico por imagem , Atrofias Ópticas Hereditárias/fisiopatologia , Fenótipo , Mutação Puntual , Convulsões/genética
20.
Neuron ; 106(3): 404-420.e8, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32135084

RESUMO

De novo germline mutations in the RNA helicase DDX3X account for 1%-3% of unexplained intellectual disability (ID) cases in females and are associated with autism, brain malformations, and epilepsy. Yet, the developmental and molecular mechanisms by which DDX3X mutations impair brain function are unknown. Here, we use human and mouse genetics and cell biological and biochemical approaches to elucidate mechanisms by which pathogenic DDX3X variants disrupt brain development. We report the largest clinical cohort to date with DDX3X mutations (n = 107), demonstrating a striking correlation between recurrent dominant missense mutations, polymicrogyria, and the most severe clinical outcomes. We show that Ddx3x controls cortical development by regulating neuron generation. Severe DDX3X missense mutations profoundly disrupt RNA helicase activity, induce ectopic RNA-protein granules in neural progenitors and neurons, and impair translation. Together, these results uncover key mechanisms underlying DDX3X syndrome and highlight aberrant RNA metabolism in the pathogenesis of neurodevelopmental disease.


Assuntos
Córtex Cerebral/metabolismo , RNA Helicases DEAD-box/genética , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/genética , Neurogênese , Animais , Linhagem Celular Tumoral , Células Cultivadas , Córtex Cerebral/anormalidades , Córtex Cerebral/embriologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transtornos do Neurodesenvolvimento/patologia , RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...