Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(2): e0155323, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38259079

RESUMO

Anti-viral surface coatings are under development to prevent viral fomite transmission from high-traffic touch surfaces in public spaces. Copper's anti-viral properties have been widely documented, but the anti-viral mechanism of copper surfaces is not fully understood. We screened a series of metal and metal oxide surfaces for anti-viral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease (COVID-19). Copper and copper oxide surfaces exhibited superior anti-SARS-CoV-2 activity; however, the level of anti-viral activity was dependent on the composition of the carrier solution used to deliver virus inoculum. We demonstrate that copper ions released into solution from test surfaces can mediate virus inactivation, indicating a copper ion dissolution-dependent anti-viral mechanism. The level of anti-viral activity is, however, not dependent on the amount of copper ions released into solution per se. Instead, our findings suggest that degree of virus inactivation is dependent on copper ion complexation with other biomolecules (e.g., proteins/metabolites) in the virus carrier solution that compete with viral components. Although using tissue culture-derived virus inoculum is experimentally convenient to evaluate the anti-viral activity of copper-derived test surfaces, we propose that the high organic content of tissue culture medium reduces the availability of "uncomplexed" copper ions to interact with the virus, negatively affecting virus inactivation and hence surface anti-viral performance. We propose that laboratory anti-viral surface testing should include virus delivered in a physiologically relevant carrier solution (saliva or nasal secretions when testing respiratory viruses) to accurately predict real-life surface anti-viral performance when deployed in public spaces.IMPORTANCEThe purpose of evaluating the anti-viral activity of test surfaces in the laboratory is to identify surfaces that will perform efficiently in preventing fomite transmission when deployed on high-traffic touch surfaces in public spaces. The conventional method in laboratory testing is to use tissue culture-derived virus inoculum; however, this study demonstrates that anti-viral performance of test copper-containing surfaces is dependent on the composition of the carrier solution in which the virus inoculum is delivered to test surfaces. Therefore, we recommend that laboratory surface testing should include virus delivered in a physiologically relevant carrier solution to accurately predict real-life test surface performance in public spaces. Understanding the mechanism of virus inactivation is key to future rational design of improved anti-viral surfaces. Here, we demonstrate that release of copper ions from copper surfaces into small liquid droplets containing SARS-CoV-2 is a mechanism by which the virus that causes COVID-19 can be inactivated.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Cobre/farmacologia , Antivirais , Óxidos , Íons
2.
ACS Photonics ; 10(5): 1341-1348, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37215320

RESUMO

Optical trapping of small particles typically requires the use of high NA microscope objectives. Photonic metasurfaces are an attractive alternative to create strongly focused beams for optical trapping applications in an integrated platform. Here, we report on the design, fabrication, and characterization of optical metasurfaces with a numerical aperture up to 1.2 and trapping stiffness greater than 400 pN/µm/W. We demonstrate that these metasurfaces perform as well as microscope objectives with the same numerical aperture. We systematically analyze the impact of the metasurface dimension on the trapping performance and show efficient trapping with metasurfaces with an area as small as 0.001 mm2. Finally, we demonstrate the versatility of the platform by designing metasurfaces able to create multisite optical tweezers for the trapping of extended objects.

3.
ACS Photonics ; 9(3): 952-960, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35434182

RESUMO

Biointegrated intracellular microlasers have emerged as an attractive and versatile tool in biophotonics. Different inorganic semiconductor materials have been used for the fabrication of such biocompatible microlasers but often operate at visible wavelengths ill-suited for imaging through tissue. Here, we report on whispering gallery mode microdisk lasers made from a range of GaInP/AlGaInP multi-quantum well structures with compositions tailored to red-shifted excitation and emission. The selected semiconductor alloys show minimal toxicity and allow the fabrication of lasers with stable single-mode emission in the NIR (675-720 nm) and sub-pJ thresholds. The microlasers operate in the first therapeutic window under direct excitation by a conventional diode laser and can also be pumped in the second therapeutic window using two-photon excitation at pulse energies compatible with standard multiphoton microscopy. Stable performance is observed under cell culturing conditions for 5 days without any device encapsulation. With their bio-optimized spectral characteristics, low lasing threshold, and compatibility with two-photon pumping, AlGaInP-based microlasers are ideally suited for novel cell tagging and in vivo sensing applications.

4.
Opt Express ; 29(10): 14260-14268, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33985149

RESUMO

We demonstrate the all-optical manipulation of polymeric membranes in microfluidic environments. The membranes are decorated with handles for their use in holographic optical tweezers systems. Our results show that due to their form factor the membranes present a substantial increase in their mechanical stability, respect to micrometric dielectric particles. This intrinsic superior stability is expected to improve profoundly a wide range of bio-photonic applications that rely on the optical manipulation of micrometric objects.

5.
ACS Nano ; 13(4): 3823-3829, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30794382

RESUMO

Lead-halide perovskites have attracted great attention due to their excellent optoelectronic properties, with rapid progress being made in their performance as light-emitting diodes (LEDs), photodiodes, and solar cells. Demonstrating large scale, high-resolution patterning of perovskites is a key enabling step to unlock their full potential for a range of optoelectronic applications. However, the development of a successful top-down lithography fabrication procedure has so far been hampered by the incompatibility of perovskite films with the solvents used during lithographic processes. Here, we perform a study on the effect of different lithographic solvents on perovskite films and use this insight to develop photolithography and electron-beam lithography procedures for patterning perovskite films. This procedure uses standard resists at low temperatures and achieves micron-scale features with flat tops. Furthermore, we expand this platform to produce arrays of multicolor pixels for potential commercial perovskite LED display applications.

6.
Nat Commun ; 9(1): 4817, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30446665

RESUMO

Molecular dyes, plasmonic nanoparticles and colloidal quantum dots are widely used in biomedical optics. Their operation is usually governed by spontaneous processes, which results in broad spectral features and limited signal-to-noise ratio, thus restricting opportunities for spectral multiplexing and sensing. Lasers provide the ultimate spectral definition and background suppression, and their integration with cells has recently been demonstrated. However, laser size and threshold remain problematic. Here, we report on the design, high-throughput fabrication and intracellular integration of semiconductor nanodisk lasers. By exploiting the large optical gain and high refractive index of GaInP/AlGaInP quantum wells, we obtain lasers with volumes 1000-fold smaller than the eukaryotic nucleus (Vlaser < 0.1 µm3), lasing thresholds 500-fold below the pulse energies typically used in two-photon microscopy (Eth ≈ 0.13 pJ), and excellent spectral stability (<50 pm wavelength shift). Multiplexed labeling with these lasers allows cell-tracking through micro-pores, thus providing a powerful tool to study cell migration and cancer invasion.


Assuntos
Espaço Intracelular/química , Lasers , Nanoestruturas/química , Nanotecnologia/métodos , Animais , Movimento Celular , Macrófagos/ultraestrutura , Camundongos , Células NIH 3T3 , Neurônios/ultraestrutura , Permeabilidade , Cultura Primária de Células , Semicondutores , Linfócitos T/ultraestrutura
7.
Sci Rep ; 7(1): 4520, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28674409

RESUMO

Metasurface holograms are typically fabricated on rigid substrates. Here we experimentally demonstrate broadband, flexible, conformable, helicity multiplexed metasurface holograms operating in the visible range, offering increased potential for real life out-of-the-lab applications. Two symmetrically distributed holographic images are obtained when circularly polarized light impinges on the reflective-type metasurface positioned on non-planar targets. The two off-axis images with high fidelity are interchangeable by controlling the helicity of incident light. Our metasurface features the arrangement of spatially varying gold nanorods on a flexible, conformable epoxy resist membrane to realize a Pancharatnam-Berry phase profile. These results pave the way to practical applications including polarization manipulation, beam steering, novel lenses, and holographic displays.

8.
Small ; 13(27)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28544454

RESUMO

Wearable plasmonic devices combine the advantages of high flexibility, ultrathinness, light weight, and excellent integration with the optical benefits mediated by plasmon-enhanced electric fields. However, two obstacles severely hinder further developments and applications of a wearable plasmonic device. One is the lack of efficient approach to obtaining devices with robust antimotion-interference property, i.e., the devices can work independently on the morphology changes of their working structures caused by arbitrary wearing conditions. The other issue is to seek a facile and high-throughput fabrication method to satisfy the financial requirement of industrialization. In order to overcome these two challenges, a functional flexible film of nanowire cluster is developed, which can be easily fabricated by taking the advantages of both conventional electrochemical and sputtering methods. Such flexible plasmonic films can be made into wearable devices that work independently on shape changes induced by various wearing conditions (such as bending, twisting and stretching). Furthermore, due to plasmonic advantages of color controlling and high sensitivity to environment changes, the flexible film of nanowire cluster can be used to fabricate wearable items (such as bracelet, clothes, bag, or even commercial markers), with the ability of wireless visualization for humidity sensing.

9.
Phys Rev Lett ; 115(5): 057401, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26274441

RESUMO

We suggest that electromagnetic chirality, generally displayed by 3D or 2D complex chiral structures, can occur in 1D patterned composites whose components are achiral. This feature is highly unexpected in a 1D system which is geometrically achiral since its mirror image can always be superposed onto it by a 180 deg rotation. We analytically evaluate from first principles the bianisotropic response of multilayered metamaterials and we show that the chiral tensor is not vanishing if the system is geometrically one-dimensional chiral; i.e., its mirror image cannot be superposed onto it by using translations without resorting to rotations. As a signature of 1D chirality, we show that 1D chiral metamaterials support optical activity and we prove that this phenomenon undergoes a dramatic nonresonant enhancement in the epsilon-near-zero regime where the magnetoelectric coupling can become dominant in the constitutive relations.

10.
Opt Lett ; 39(15): 4345-8, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25078173

RESUMO

We propose and demonstrate the concept of a contra-directional coupler between a W1 and a slotted photonic crystal waveguide. The bandwidth and operating wavelength of such a coupler can be controlled via its geometrical parameters, and power transfer is not periodic unlike in the more familiar codirectional case. Light of specific wavelengths can be extracted from the W1 mode into air slot modes using this design, with W1/slot coupling efficiencies of up to 99±1%, and waveguide extracted coupling efficiencies of up to 51±12% demonstrated experimentally. Combining several of these couplers in series, we demonstrate the spectral filtering functionality on-chip. The device therefore combines the well-known sensing function of the slotted waveguide geometry with the spectrometer function, thus uniting two essential biosensor functions in a monolithic device.


Assuntos
Refratometria/instrumentação , Análise Espectral/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Cristalização , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Fótons , Espalhamento de Radiação , Integração de Sistemas
11.
Nat Mater ; 13(9): 846-8, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25141808
12.
ACS Nano ; 8(3): 2575-83, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24524333

RESUMO

Direct and quantitative detection of unlabeled glycerophosphoinositol (GroPIns), an abundant cytosolic phosphoinositide derivative, would allow rapid evaluation of several malignant cell transformations. Here we report label-free analysis of GroPIns via surface-enhanced Raman spectroscopy (SERS) with a sensitivity of 200 nM, well below its apparent concentration in cells. Crucially, our SERS substrates, based on lithographically defined gold nanofeatures, can be used to predict accurately the GroPIns concentration even in multicomponent mixtures, avoiding the preliminary separation of individual compounds. Our results represent a critical step toward the creation of SERS-based biosensor for rapid, label-free, and reproducible detection of specific molecules, overcoming limits of current experimental methods.


Assuntos
Fosfatos de Inositol/análise , Análise Espectral Raman , Biomarcadores/análise , Biomarcadores/química , Glicerol/química , Ouro/química , Inositol/química , Fosfatos de Inositol/química , Fenômenos Ópticos , Reprodutibilidade dos Testes , Propriedades de Superfície , Fatores de Tempo
13.
Opt Lett ; 39(1): 96-9, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24365831

RESUMO

The speckle pattern arising from a thin random, disordered scatterer may be used to detect the transversal mode of an incident beam. On the other hand, speckle patterns originating from meter-long multimode fibers can be used to detect different wavelengths. Combining these approaches, we develop a method that uses a thin random scattering medium to measure the wavelength of a near-infrared laser beam with picometer resolution. The method is based on the application of principal component analysis, which is used for pattern recognition and is applied here to the case of speckle pattern categorization.

14.
Sci Rep ; 3: 1808, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23657743

RESUMO

The last decade has seen subwavelength focusing of the electromagnetic field in the proximity of nanoplasmonic structures with various designs. However, a shared issue is the spatial confinement of the field, which is mostly inflexible and limited to fixed locations determined by the geometry of the nanostructures, which hampers many applications. Here, we coherently address numerically and experimentally single and multiple plasmonic nanostructures chosen from a given array, resorting to the principle of optical eigenmodes. By decomposing the light field into optical eigenmodes, specifically tailored to the nanostructure, we create a subwavelength, selective and dynamic control of the incident light. The coherent control of plasmonic nanoantennas using this approach shows an almost zero crosstalk. This approach is applicable even in the presence of large transmission aberrations, such as present in holographic diffusers and multimode fibres. The method presents a paradigm shift for the addressing of plasmonic nanostructures by light.


Assuntos
Técnicas Biossensoriais , Campos Eletromagnéticos , Ouro/química , Nanoestruturas/química , Pinças Ópticas , Ressonância de Plasmônio de Superfície , Modelos Teóricos , Espalhamento de Radiação
15.
Sensors (Basel) ; 13(3): 3675-710, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23503295

RESUMO

Optical biosensors are increasingly being considered for lab-on-a-chip applications due to their benefits such as small size, biocompatibility, passive behaviour and lack of the need for fluorescent labels. The light guiding mechanisms used by many of them results in poor overlap of the optical field with the target molecules, reducing the maximum sensitivity achievable. This review article presents a new platform for optical biosensors, namely slotted photonic crystals, which provide higher sensitivities due to their ability to confine, spatially and temporally, the optical mode peak within the analyte itself. Loss measurements showed values comparable to standard photonic crystals, confirming their ability to be used in real devices. A novel resonant coupler was designed, simulated, and experimentally tested, and was found to perform better than other solutions within the literature. Combining with cavities, microfluidics and biological functionalization allowed proof-of-principle demonstrations of protein binding to be carried out. Higher sensitivities were observed in smaller structures than possible with most competing devices reported in the literature. This body of work presents slotted photonic crystals as a realistic platform for complete on-chip biosensing; addressing key design, performance and application issues, whilst also opening up exciting new ideas for future study.


Assuntos
Técnicas Biossensoriais , Microfluídica , Óptica e Fotônica , Cristalização , Humanos , Dispositivos Lab-On-A-Chip , Luz , Cristais Líquidos
16.
Opt Express ; 21(1): 1002-7, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23388994

RESUMO

We demonstrate the operation of a flexible optical filter based on guided mode resonances that operates in the visible regime. The filter is fabricated on a free standing polymeric membrane of 1.3 µm thickness and we show how the geometrical design parameters of the filter determine its optical properties, and how various types of filter can be made with this scheme. To highlight the versatility and robustness of the approach, we mount a filter onto a collimated fibre output and demonstrate successful wavelength filtering.

17.
Opt Express ; 19(6): 5156-62, 2011 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-21445151

RESUMO

The Luneburg lens is an aberration-free lens that focuses light from all directions equally well. We fabricated and tested a Luneburg lens in silicon photonics. Such fully-integrated lenses may become the building blocks of compact Fourier optics on chips. Furthermore, our fabrication technique is sufficiently versatile for making perfect imaging devices on silicon platforms.

18.
Opt Express ; 17(5): 3424-8, 2009 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-19259180

RESUMO

We demonstrate beam deflection and multiple channel communication in free space optical communications using microprisms integrated directly onto an array of vertical cavity surface emitting lasers (VCSELs). The design and fabrication of such a transmitter is presented, and shown to achieve beam deflection of up to 10 degrees in a planar configuration. A location discovery application, for use within a distributed network, is put forward and analysed.

19.
Phys Rev Lett ; 101(1): 013601, 2008 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-18764110

RESUMO

The propagation of 2D+1 wave packets in 1D band gap systems shows that the interplay of periodicity and nonlinearity leads to the spontaneous formation of fast and slow conical localized waves. Such nonlinear tunneling has features that differ on the two edges of the band gap and it is characterized by the competition of bullets and nonlinear X waves.

20.
Opt Lett ; 31(21): 3146-8, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17041663

RESUMO

We analyze phase matching with reference to frequency doubling in nanosized quadratic waveguides encompassing form birefringence and supporting cross-polarized fundamental and second-harmonic modes. In an AlGaAs rod with an air void, we show that phase-matched second-harmonic generation could be achieved in a wide spectral range employing state-of-the-art nanotechnology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA