Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Nanotechnol ; 19(3): 298-305, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38052942

RESUMO

All-optical modulation yields the promise of high-speed information processing. In this field, metasurfaces are rapidly gaining traction as ultrathin multifunctional platforms for light management. Among the featured functionalities, they enable light-wavefront manipulation and more recently demonstrated the ability to perform light-by-light manipulation through nonlinear optical processes. Here, by employing a nonlinear periodic metasurface, we demonstrate the all-optical routing of telecom photons upconverted to the visible range. This is achieved via the interference between two frequency-degenerate upconversion processes, namely, third-harmonic and sum-frequency generation, stemming from the interaction of a pump pulse with its frequency-doubled replica. By tuning the relative phase and polarization between these two pump beams, we route the upconverted signal among the diffraction orders of the metasurface with a modulation efficiency of up to 90%. This can be achieved by concurrently engineering the nonlinear emission of the individual elements (meta-atoms) of the metasurface along with its pitch. Owing to the phase control and ultrafast dynamics of the underlying nonlinear processes, free-space all-optical routing could be potentially performed at rates close to the employed optical frequencies divided by the quality factor of the optical resonances at play. Our approach adds a further twist to optical interferometry, which is a key enabling technique employed in a wide range of applications, such as homodyne detection, radar interferometry, light detection and ranging technology, gravitational-wave detection and molecular photometry. In particular, the nonlinear character of light upconversion combined with phase sensitivity is extremely appealing for enhanced imaging and biosensing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...