Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Clin Epigenetics ; 16(1): 9, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178234

RESUMO

BACKGROUND: Malignant peripheral nerve sheath tumors (MPNSTs) account for 3-10% of pediatric sarcomas, 50% of which occur in neurofibromatosis type 1 (NF1). Sporadic MPNSTs diagnosis may be challenging due to the absence of specific markers, apart from immunohistochemical H3K27me3 loss. DNA methylation (DNAm) profiling is a useful tool for brain and mesenchymal neoplasms categorization, and MPNSTs exhibit a specific DNAm signature. An MPNST-like group has recently been recognized, including pediatric tumors with retained H3K27me3 mark and clinical/histological features not yet well explored. This study aims to characterize the DNAm profile of pediatric/juvenile MPNSTs/MPNST-like entities and its diagnostic/prognostic relevance. RESULTS: We studied 42 tumors from two groups. Group 1 included 32 tumors histologically diagnosed as atypical neurofibroma (ANF) (N = 5) or MPNST (N = 27); group 2 comprised 10 tumors classified as MPNST-like according to Heidelberg sarcoma classifier. We performed further immunohistochemical and molecular tests to reach an integrated diagnosis. In group 1, DNAm profiling was inconclusive for ANF; while, it confirmed the original diagnosis in 12/27 MPNSTs, all occurring in NF1 patients. Five/27 MPNSTs were classified as MPNST-like: Integrated diagnosis confirmed MPNST identity for 3 cases; while, the immunophenotype supported the change to high-grade undifferentiated spindle cell sarcoma in 2 samples. The remaining 10/27 MPNSTs variably classified as schwannoma, osteosarcoma, BCOR-altered sarcoma, rhabdomyosarcoma (RMS)-MYOD1 mutant, RMS-like, and embryonal RMS or did not match with any defined entity. Molecular analysis and histologic review confirmed the diagnoses of BCOR, RMS-MYOD1 mutant, DICER1-syndrome and ERMS. Group 2 samples included 5 high-grade undifferentiated sarcomas/MPNSTs and 5 low-grade mesenchymal neoplasms. Two high-grade and 4 low-grade lesions harbored tyrosine kinase (TRK) gene fusions. By HDBSCAN clustering analysis of the whole cohort we identified two clusters mainly distinguished by H3K27me3 epigenetic signature. Exploring the copy number variation, high-grade tumors showed frequent chromosomal aberrations and CDKN2A/B loss significantly impacted on survival in the MPNSTs cohort. CONCLUSION: DNAm profiling is a useful tool in diagnostic work-up of MPNSTs. Its application in a retrospective series collected during pre-molecular era contributed to classify morphologic mimics. The methylation group MPNST-like is a 'hybrid' category in pediatrics including high-grade and low-grade tumors mainly characterized by TRK alterations.


Assuntos
Neoplasias Ósseas , Neurofibrossarcoma , Rabdomiossarcoma , Sarcoma , Humanos , Criança , Neurofibrossarcoma/diagnóstico , Neurofibrossarcoma/genética , Neurofibrossarcoma/patologia , Histonas/metabolismo , Metilação de DNA , Estudos Retrospectivos , Variações do Número de Cópias de DNA , Sarcoma/diagnóstico , Sarcoma/genética , Sarcoma/patologia , Proteínas Tirosina Quinases , Ribonuclease III , RNA Helicases DEAD-box
2.
Nat Commun ; 14(1): 8373, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102140

RESUMO

Rhabdomyosarcomas (RMS) are pediatric mesenchymal-derived malignancies encompassing PAX3/7-FOXO1 Fusion Positive (FP)-RMS, and Fusion Negative (FN)-RMS with frequent RAS pathway mutations. RMS express the master myogenic transcription factor MYOD that, whilst essential for survival, cannot support differentiation. Here we discover SKP2, an oncogenic E3-ubiquitin ligase, as a critical pro-tumorigenic driver in FN-RMS. We show that SKP2 is overexpressed in RMS through the binding of MYOD to an intronic enhancer. SKP2 in FN-RMS promotes cell cycle progression and prevents differentiation by directly targeting p27Kip1 and p57Kip2, respectively. SKP2 depletion unlocks a partly MYOD-dependent myogenic transcriptional program and strongly affects stemness and tumorigenic features and prevents in vivo tumor growth. These effects are mirrored by the investigational NEDDylation inhibitor MLN4924. Results demonstrate a crucial crosstalk between transcriptional and post-translational mechanisms through the MYOD-SKP2 axis that contributes to tumorigenesis in FN-RMS. Finally, NEDDylation inhibition is identified as a potential therapeutic vulnerability in FN-RMS.


Assuntos
Rabdomiossarcoma , Humanos , Carcinogênese/genética , Linhagem Celular Tumoral , Rabdomiossarcoma/genética , Rabdomiossarcoma/patologia , Fatores de Transcrição , Transformação Celular Neoplásica , Diferenciação Celular
3.
Cell Biosci ; 13(1): 207, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957701

RESUMO

BACKGROUND: Paediatric-type diffuse High-Grade Gliomas (PDHGG) are highly heterogeneous tumours which include distinct cell sub-populations co-existing within the same tumour mass. We have previously shown that primary patient-derived and optical barcoded single-cell-derived clones function as interconnected networks. Here, we investigated the role of exosomes as a route for inter-clonal communication mediating PDHGG migration and invasion. RESULTS: A comprehensive characterisation of seven optical barcoded single-cell-derived clones obtained from two patient-derived cell lines was performed. These analyses highlighted extensive intra-tumour heterogeneity in terms of genetic and transcriptional profiles between clones as well as marked phenotypic differences including distinctive motility patterns. Live single-cell tracking analysis of 3D migration and invasion assays showed that the single-cell-derived clones display a higher speed and longer travelled distance when in co-culture compared to mono-culture conditions. To determine the role of exosomes in PDHGG inter-clonal cross-talks, we isolated exosomes released by different clones and characterised them in terms of marker expression, size and concentration. We demonstrated that exosomes are actively internalized by the cells and that the inhibition of their biogenesis, using the phospholipase inhibitor GW4689, significantly reduced the cell motility in mono-culture and more prominently when the cells from the clones were in co-culture. Analysis of the exosomal miRNAs, performed with a miRNome PCR panel, identified clone-specific miRNAs and a set of miRNA target genes involved in the regulation of cell motility/invasion/migration. These genes were found differentially expressed in co-culture versus mono-culture conditions and their expression levels were significantly modulated upon inhibition of exosome biogenesis. CONCLUSIONS: In conclusion, our study highlights for the first time a key role for exosomes in the inter-clonal communication in PDHGG and suggests that interfering with the exosome biogenesis pathway may be a valuable strategy to inhibit cell motility and dissemination for these specific diseases.

4.
Front Immunol ; 14: 1209874, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965316

RESUMO

Introduction: Anaphylaxis is among the most severe manifestations of allergic disorders, but its molecular basis remains largely unknown and reliable diagnostic markers are not currently available. MicroRNAs (miRNAs) regulate several pathophysiological processes and have been proposed as non-invasive biomarkers. Therefore, this study aims to evaluate their involvement in anaphylactic reaction and their value as biomarkers. Methods: Acute (anaphylaxis) and baseline (control) serum samples from 67 patients with anaphylaxis were studied. Among them, 35 were adults with drug-induced anaphylaxis, 13 adults with food-induced anaphylaxis and 19 children with food-induced anaphylaxis. The circulating serum miRNAs profile was characterized by next-generation sequencing (NGS). For this purpose, acute and baseline samples from 5 adults with drug-induced anaphylaxis were used. RNA was extracted, retrotranscribed, sequenced and the readings obtained were mapped to the human database miRBase_20. In addition, a system biology analysis (SBA) was performed with its target genes and revealed pathways related to anaphylactic mediators signaling. Moreover, functional and molecular endothelial permeability assays were conducted with miR-375-3p-transfected cells in response to cAMP. Results: A total of 334 miRNAs were identified, of which 21 were significant differentially expressed between both phases. Extracellular vesicles (EVs) were characterized by Western blot, electron microscopy and NanoSight. A decrease of miR-375-3p levels was determined by qPCR in both serum and EVs of patients with anaphylaxis (****p<.0001). Precisely, the decrease of miR-375-3p correlated with the increase of two inflammatory cytokines: monocyte chemoattractant protein-1 (MCP-1) and granulocyte macrophage colony-stimulating factor (GM-CSF). On the other hand, functional and molecular data obtained showed that miR-375-3p partially blocked the endothelial barrier maintenance and stabilization by disassembly of cell-cell junctions exhibiting low Rac1-Cdc42 levels. Discussion: These findings demonstrate a differential serum profile of circulating miRNAs in patients with anaphylaxis and exhibit the miR-375-3p modulation in serum and EVs during drug- and food-mediated anaphylactic reactions. Furthermore, the in silico and in vitro studies show a negative role for miR-375-3p/Rac1-Cdc42 in the endothelial barrier stability.


Assuntos
Anafilaxia , MicroRNA Circulante , Vesículas Extracelulares , MicroRNAs , Adulto , Criança , Humanos , Anafilaxia/genética , Anafilaxia/metabolismo , MicroRNAs/metabolismo , Vesículas Extracelulares/metabolismo , MicroRNA Circulante/metabolismo , Biomarcadores/metabolismo
5.
Clin Cancer Res ; 29(18): 3744-3758, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37432984

RESUMO

PURPOSE: Malignant peripheral nerve sheath tumors (MPNST) are highly aggressive soft-tissue sarcomas that lack effective treatments, underscoring the urgent need to uncover novel mediators of MPNST pathogenesis that may serve as potential therapeutic targets. Tumor angiogenesis is considered a critical event in MPNST transformation and progression. Here, we have investigated whether endoglin (ENG), a TGFß coreceptor with a crucial role in angiogenesis, could be a novel therapeutic target in MPNSTs. EXPERIMENTAL DESIGN: ENG expression was evaluated in human peripheral nerve sheath tumor tissues and plasma samples. Effects of tumor cell-specific ENG expression on gene expression, signaling pathway activation and in vivo MPNST growth and metastasis, were investigated. The efficacy of ENG targeting in monotherapy or in combination with MEK inhibition was analyzed in xenograft models. RESULTS: ENG expression was found to be upregulated in both human MPNST tumor tissues and plasma-circulating small extracellular vesicles. We demonstrated that ENG modulates Smad1/5 and MAPK/ERK pathway activation and pro-angiogenic and pro-metastatic gene expression in MPNST cells and plays an active role in tumor growth and metastasis in vivo. Targeting with ENG-neutralizing antibodies (TRC105/M1043) decreased MPNST growth and metastasis in xenograft models by reducing tumor cell proliferation and angiogenesis. Moreover, combination of anti-ENG therapy with MEK inhibition effectively reduced tumor cell growth and angiogenesis. CONCLUSIONS: Our data unveil a tumor-promoting function of ENG in MPNSTs and support the use of this protein as a novel biomarker and a promising therapeutic target for this disease.


Assuntos
Neoplasias de Bainha Neural , Neurofibrossarcoma , Humanos , Biomarcadores , Linhagem Celular Tumoral , Endoglina/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Neoplasias de Bainha Neural/tratamento farmacológico , Neoplasias de Bainha Neural/genética , Neoplasias de Bainha Neural/metabolismo , Transdução de Sinais
6.
Life (Basel) ; 13(4)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37109493

RESUMO

Glioblastoma (GBM) is the most common and aggressive cancer of the brain. Presently, GBM patients have a poor prognosis, and therapy primarily aims to extend the life expectancy of affected patients. The current treatment of GBM in adult cases and high-grade gliomas in the pediatric population involves a multimodal approach that includes surgical resection followed by simultaneous chemo/radiotherapy. Exosomes are nanoparticles that transport proteins and nucleic acids and play a crucial role in mediating intercellular communication. Recent evidence suggests that these microvesicles may be used as biological carriers and offer significant advantages in targeted therapy. Due to their inherent cell-targeting properties, circulation stability, and biocompatibility, exosomes are emerging as promising new carriers for drugs and biotherapeutics. Furthermore, these nanovesicles are a repository of potential diagnostic and prognostic markers. In this review, we focus on the therapeutic potentials of exosomes in nano-delivery and describe the latest evidence of their use as a therapeutic tool in GBM.

7.
Expert Rev Anticancer Ther ; 23(5): 471-484, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37017324

RESUMO

INTRODUCTION: Desmoplastic small round cell tumor (DSRCT) is an extremely rare and highly aggressive soft tissue sarcoma, presenting mainly in male adolescents and young adults with multiple nodules disseminated within the abdominopelvic cavity. Despite a multimodal approach including aggressive cytoreductive surgery, intensive multi-agent chemotherapy, and postoperative whole abdominopelvic radiotherapy, the prognosis for DSRCT remains dismal. Median progression-free survival ranges between 4 and 21 months, and overall survival between 17 and 60 months, with the 5-year overall survival rate in the range of 10-20%. AREA COVERED: This review discusses the treatment strategies used for DSRCT over the years, the state of the art of current treatments, and future clinical prospects. EXPERT OPINION: The unsatisfactory outcomes for patients with DSRCT warrant investigations into innovative treatment combinations. An international multidisciplinary and multi-stakeholder collaboration, involving both pediatric and adult sarcoma communities, is needed to propel preclinical model generation and drug development, and innovative clinical trial designs to enable the timely testing of treatments involving novel agents guided by biology to boost the chances of survival for patients with this devastating disease.


Assuntos
Tumor Desmoplásico de Pequenas Células Redondas , Neoplasias Peritoneais , Sarcoma , Adolescente , Adulto Jovem , Humanos , Criança , Masculino , Terapia Combinada , Neoplasias Peritoneais/tratamento farmacológico , Tumor Desmoplásico de Pequenas Células Redondas/tratamento farmacológico , Tumor Desmoplásico de Pequenas Células Redondas/patologia , Prognóstico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Sarcoma/tratamento farmacológico
8.
Mod Pathol ; 36(2): 100039, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36853789

RESUMO

In the pediatric population, BCL6-correpresor gene (BCOR)-upregulated tumors include primitive myxoid mesenchymal tumors/undifferentiated sarcomas (PMMTI/UND), clear cell sarcomas of the kidney (CCSK), and high-grade neuroepithelial tumors (HG-NET). We investigated DNA methylation (DNAm) and copy number variation (CNV) profiling in these tumors (N = 34) using an Illumina EPIC BeadChip to better define the potential use of these tools to confirm diagnosis and predict outcomes. Twenty-seven tumors from 25 patients (age range, 0-10 years), showed molecular confirmation of genetic abnormalities as follows: BCOR internal tandem duplication in 14 PMMTI/UND, 8 CCSK, and 3 HG-NET and YWHAE fusions in 2 PMMTI/UND. The remaining 7 cases lacking informative molecular data were analyzed by immunophenotyping and were included in the study as a training cohort, clearly separated from the main study group. These were 4 PMMTI, 1 HG-NET, and 1 CCSK in which poor RNA preservation precluded the confirmation of BCOR rearrangements and 1 CCSK in which no rearrangements were found. DNAm data were compared with those of brain tumor and/or sarcoma classifier. Differentially methylated regions (DMRs) were analyzed in the 3 groups. Twenty-two cases of the 24 molecularly confirmed PMMTI/UND and CCSK and 3 of 6 of those with only immunophenotyping were classified within the methylation class "BCOR-altered sarcoma family" with optimal calibrated scores. PMMTI/UND and CCSK showed similar methylation profiles, whereas thousands of DMRs and significantly enriched pathways were evident between soft tissue/kidney tumors and HG-NET. The CNV analysis showed an overall flat profile in 19 of the 31 evaluable tumors (8/10 CCSK; 9/18 PMMTI/UND; 2/4 HG-NET). The most frequent CNVs were 1q gain and 9p and 10q loss. Follow-up time data were available for 20 patients: ≥2 CNV significantly correlated with a worse overall survival rate. In conclusion, soft tissue and kidney BCOR sarcomas matched with BCOR-altered sarcoma methylation class, whereas those from the brain matched with the central nervous system tumor classifier HG-NET BCOR, supporting the notion that DNAm profiling is an informative diagnostic tool. CNV alterations were associated with a more aggressive clinical behavior.


Assuntos
Neoplasias Renais , Sarcoma , Neoplasias de Tecidos Moles , Criança , Humanos , Recém-Nascido , Lactente , Pré-Escolar , Metilação de DNA , Variações do Número de Cópias de DNA , Rim , Neoplasias Renais/genética , Sarcoma/genética , Neoplasias de Tecidos Moles/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética
9.
Front Oncol ; 13: 1324013, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38260858

RESUMO

The increased availability of genetic technologies has significantly improved the detection of novel germline variants conferring a predisposition to tumor development in patients with malignant disease. The identification of variants of uncertain significance (VUS) represents a challenge for the clinician, leading to difficulties in decision-making regarding medical management, the surveillance program, and genetic counseling. Moreover, it can generate confusion and anxiety for patients and their family members. Herein, we report a 5-year-old girl carrying a VUS in the Succinate Dehydrogenase Complex Subunit C (SHDC) gene who had been previously treated for high-risk neuroblastoma and subsequently followed by the development of secondary acute myeloid leukemia. In this context, we describe how functional studies can provide additional insight on gene function determining whether the variant interferes with normal protein function or stability.

10.
Cancers (Basel) ; 14(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36551734

RESUMO

Central nervous system (CNS) metastatic spread in neuroblastoma (NB) is rare and occurs more often at relapse/progression. We report on CNS involvement in high risk (HR) NB over 25 years. For this retrospective study, we reviewed the CNS imaging of all the patients treated at Bambino Gesù Children Hospital from 1 July 1996 to 30 June 2022. A total of 128 patients with HR NB were diagnosed over 26 years. Out of 128 patients, CNS metastatic spread occurred in 6 patients: 3 patients presented a metastatic spread at diagnosis, while in 3 patients, CNS was involved at relapse. Overall, the rate of occurrence of CNS spread is 4.7% with the same distribution at diagnosis and at relapse, namely 2.3%. Interestingly, CNS spread at diagnosis was observed only before 2012, whereas CNS was observed at relapse only after 2012, in the immunotherapy era. CNS metastases presented similar imaging features at diagnosis and at relapse, with a peculiar hemorrhagic aspect and mainly hemispheric localization in patients with bone skull involvement at the time of diagnosis. The outcome is dismal, and 3 out of 6 patients died for progressive disease.

11.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36362243

RESUMO

Aqueous humor (AH) can be easily and safely used to evaluate disease-specific biomarkers in ocular disease. The aim of this study was to identify specific proteins biomarkers in the AH of retinoblastoma (RB) patients at various stages of the disease. We analyzed the proteome of 53 AH samples using high-resolution mass spectrometry. We grouped the samples according to active vitreous seeding (Group 1), active aqueous seeding (Group 2), naive RB (group 3), inactive RB (group 4), and congenital cataracts as the control (Group 5). We found a total of 889 proteins in all samples. Comparative parametric analyses among the different groups revealed three additional proteins expressed in the RB groups that were not expressed in the control group. These were histone H2B type 2-E (HISTH2B2E), InaD-like protein (PATJ), and ubiquitin conjugating enzyme E2 V1 (UBE2V1). Upon processing the data of our study with the OpenTarget Tool software, we found that glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and CD44 were more highly expressed in the RB groups. Our results provide a proteome database regarding AH related to RB disease that may be used as a source of biomarkers. Further prospective studies should validate our finding in a large cohort of RB patients.


Assuntos
Neoplasias da Retina , Retinoblastoma , Humanos , Retinoblastoma/metabolismo , Humor Aquoso/metabolismo , Proteômica , Proteoma/metabolismo , Estudos Prospectivos , Biomarcadores/metabolismo , Neoplasias da Retina/metabolismo
12.
JCO Precis Oncol ; 6: e2100534, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36265118

RESUMO

PURPOSE: Rhabdomyosarcomas (RMS) are rare neoplasms affecting children and young adults. Efforts to improve patient survival have been undermined by a lack of suitable disease markers. Plasma circulating tumor DNA (ctDNA) has shown promise as a potential minimally invasive biomarker and monitoring tool in other cancers; however, it remains underexplored in RMS. We aimed to determine the feasibility of identifying and quantifying ctDNA in plasma as a marker of disease burden and/or treatment response using blood samples from RMS mouse models and patients. METHODS: We established mouse models of RMS and applied quantitative polymerase chain reaction (PCR) and droplet digital PCR (ddPCR) to detect ctDNA within the mouse plasma. Potential driver mutations, copy-number alterations, and DNA breakpoints associated with PAX3/7-FOXO1 gene fusions were identified in the RMS samples collected at diagnosis. Patient-matched plasma samples collected from 28 patients with RMS before, during, and after treatment were analyzed for the presence of ctDNA via ddPCR, panel sequencing, and/or whole-exome sequencing. RESULTS: Human tumor-derived DNA was detectable in plasma samples from mouse models of RMS and correlated with tumor burden. In patients, ctDNA was detected in 14/18 pretreatment plasma samples with ddPCR and 7/7 cases assessed by sequencing. Levels of ctDNA at diagnosis were significantly higher in patients with unfavorable tumor sites, positive nodal status, and metastasis. In patients with serial plasma samples (n = 18), fluctuations in ctDNA levels corresponded to treatment response. CONCLUSION: Comprehensive ctDNA analysis combining high sensitivity and throughput can identify key molecular drivers in RMS models and patients, suggesting potential as a minimally invasive biomarker. Preclinical assessment of treatments using mouse models and further patient testing through prospective clinical trials are now warranted.


Assuntos
DNA Tumoral Circulante , Neoplasias , Rabdomiossarcoma Embrionário , Humanos , Criança , Camundongos , Animais , DNA Tumoral Circulante/genética , Estudos de Viabilidade , Estudos Prospectivos , Biomarcadores Tumorais/genética , Mutação
13.
Front Oncol ; 12: 835642, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574376

RESUMO

Rhabdomyosarcoma (RMS) is a pediatric myogenic soft tissue sarcoma. The Fusion-Positive (FP) subtype expresses the chimeric protein PAX3-FOXO1 (P3F) while the Fusion-Negative (FN) is devoid of any gene translocation. FP-RMS and metastatic FN-RMS are often unresponsive to conventional therapy. Therefore, novel therapeutic approaches are needed to halt tumor progression. NOTCH signaling has oncogenic functions in RMS and its pharmacologic inhibition through γ-secretase inhibitors blocks tumor growth in vitro and in vivo. Here, we show that NOTCH signaling blockade resulted in the up-regulation and phosphorylation of the MET oncogene in both RH30 (FP-RMS) and RD (FN-RMS) cell lines. Pharmacologic inhibition of either NOTCH or MET signaling slowed proliferation and restrained cell survival compared to control cells partly by increasing Annexin V and CASP3/7 activation. Co-treatment with NOTCH and MET inhibitors significantly amplified these effects and enhanced PARP1 cleavage in both cell lines. Moreover, it severely hampered cell migration, colony formation, and anchorage-independent growth compared to single-agent treatments in both cell lines and significantly prevented the growth of FN-RMS cells grown as spheroids. Collectively, our results unveil the overexpression of the MET oncogene by NOTCH signaling targeting in RMS cells and show that MET pathway blockade sensitizes them to NOTCH inhibition.

14.
Nucl Med Commun ; 43(2): 129-144, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34720106

RESUMO

OBJECTIVE: 131I-meta-iodobenzylguanidine (131I-MIBG) combined with myeloablative chemotherapy represents an effective treatment in children affected by relapsed/refractory neuroblastoma (NBL) for disease palliation and in improving progression-free survival. The aim of our study is to evaluate the feasibility, safety and efficacy of tandem 131I-MIBG followed by high-dose chemotherapy with Melphalan. METHODS: Thirteen patients (age range: 3-17 years) affected by relapsed/refractory NB, previously treated according to standard procedures, were included in the study. Each treatment cycle included two administrations of 131I-MIBG (with a dosimetric approach) followed by a single dose of Melphalan with peripheral blood stem cell rescue. RESULTS: At the end of the treatment, ten patients experienced grade 4 neutropenia, two grade 3 and one patient grade 2, three patients presented febrile neutropenia and all needed RBC and platelets transfusions; one patient presented grade 4 mucositis, four grade 3 and one patient grade 2 mucositis. One patient showed progressive disease, eight patients showed stable disease and four patients showed partial response. CONCLUSION: High-dose 131I-MIBG therapy combined with chemotherapy represent a well-tolerated and effective modality of treatment in heavily pretreated patients affected by relapsed/refractory NBL. However, further studies, including a wider cohort of patients, are needed.


Assuntos
3-Iodobenzilguanidina
15.
Front Oncol ; 12: 1106597, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36686814

RESUMO

Introduction: While subcutaneous metastases are often observed with stage MS neuroblastoma, an entity that usually resolves spontaneously, skeletal muscle metastases (SMM) have been rarely described. The purpose of this retrospective study was to investigate the significance of SMM in neuroblastoma. Patients and methods: Seventeen patients with neuroblastoma SMM were diagnosed at a median age of 4.3 (0.1-15.6) months. All had SMM at diagnosis and metastases at other sites. Fifteen (88%) had ≥ 2 SMM in disparate muscle groups. One, 14, and 2 patients had low, intermediate, and high-risk disease respectively. Fifteen tumors had favorable histology without MYCN amplification, and 2 were MYCN-amplified. Most SMM (80%; n=12/15 evaluated) were MIBG-avid. Results: Only 1 patient (with MYCN-non-amplified neuroblastoma) had disease progression. All survive at median follow-up of 47.9 (16.9-318.9) months post-diagnosis. Biological markers (histology, chromosomal and genetic aberrations) were not prognostic. Whole genome sequencing of 3 matched primary and SMM lesions suggested that both primary and metastatic tumors arose from the same progenitor. SMM completely resolved in 10 patients by 12 months post-diagnosis. Of 4 patients managed with watchful observation alone without any cytotoxic therapy, 3 maintain complete remission with SMM resolving by 5, 13, and 21 months post-diagnosis respectively. Conclusions: Children with neuroblastoma SMM have an excellent prognosis, with a clinical course suggestive of stage MS disease. Based on these results, the initial management of infants with non-MYCN-amplified NB with SMM could be watchful observation, which could eliminate or reduce exposure to genotoxic therapy.

16.
Biomedicines ; 11(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36672544

RESUMO

Circular RNAs (circRNAs) are a class of single-stranded closed noncoding RNA molecules which are formed as a result of reverse splicing of mRNAs. Despite their relative abundance, only recently there appeared an increased interest in the understanding of their regulatory importance. Among their most relevant characteristics are high stability, abundance and evolutionary conservation among species. CircRNAs are implicated in several cellular functions, ranging from miRNA and protein sponges to transcriptional modulation and splicing. Additionally, circRNAs' aberrant expression in pathological conditions is bringing to light their possible use as diagnostic and prognostic biomarkers. Their use as indicator molecules of pathological changes is also supported by their peculiar covalent closed cyclic structure which bestows resistance to RNases. Their regulatory role in cancer pathogenesis and metastasis is supported by studies involving human tumors that have investigated different expression profiles of these molecules. As endogenous competitive RNA, circRNAs can regulate tumor proliferation and invasion and they arouse great consideration as potential therapeutic biomarkers and targets for cancer. In this review, we describe the most recent findings on circRNAs in the most common pediatric solid cancers (such as brain tumors, neuroblastomas, and sarcomas) and in more rare ones (such as Wilms tumors, hepatoblastomas, and retinoblastomas).

17.
Int J Mol Sci ; 22(11)2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34067464

RESUMO

Background: Spindle cell rhabdomyosarcoma (S-RMS) is a rare tumor that was previously considered as an uncommon variant of embryonal RMS (ERMS) and recently reclassified as a distinct RMS subtype with NCOA2, NCOA1, and VGLL2 fusion genes. In this study, we established a cell line (S-RMS1) derived from a four-month-old boy with infantile spindle cell RMS harboring SRF-NCOA2 gene fusion. Methods: Morphological and molecular characteristics of S-RMS1 were analyzed and compared with two RMS cell lines, RH30 and RD18. Whole genome sequencing of S-RMS1 and clinical exome sequencing of genomic DNA were performed. Results: S-RMS1 showed cells small in size, with a fibroblast-like morphology and positivity for MyoD-1, myogenin, desmin, and smooth muscle actin. The population doubling time was 3.7 days. Whole genome sequencing demonstrated that S-RMS1 retained the same genetic profile of the tumor at diagnosis. A Western blot analysis showed downregulation of AKT-p and YAP-p while RT-qPCR showed upregulation of endoglin and GATA6 as well as downregulation of TGFßR1 and Mef2C transcripts. Conclusion: This is the first report of the establishment of a cell line from an infantile spindle cell RMS with SRF-NCOA2 gene fusion. S-RMS1 should represent a useful tool for the molecular characterization of this rare and almost unknown tumor.


Assuntos
Fusão Gênica/genética , Coativador 2 de Receptor Nuclear/genética , Proteínas Recombinantes de Fusão/genética , Rabdomiossarcoma/genética , Fator de Resposta Sérica/genética , Adulto , Linhagem Celular , Criança , Pré-Escolar , Regulação para Baixo/genética , Exoma/genética , Feminino , Humanos , Lactente , Masculino , Miogenina/genética , Coativador 1 de Receptor Nuclear/genética , Adulto Jovem
18.
Pediatr Blood Cancer ; 68(9): e29110, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34003574

RESUMO

BACKGROUND: MYCN amplification represents a powerful prognostic factor in neuroblastoma (NB) and may occasionally account for intratumoral heterogeneity. Radiomics is an emerging field of advanced image analysis that aims to extract a large number of quantitative features from standard radiological images, providing valuable clinical information. PROCEDURE: In this retrospective study, we aimed to create a radiogenomics model by correlating computed tomography (CT) radiomics analysis with MYCN status. NB lesions were segmented on pretherapy CT scans and radiomics features subsequently extracted using a dedicated library. Dimensionality reduction/features selection approaches were then used for features procession and logistic regression models have been developed for the considered outcome. RESULTS: Seventy-eight patients were included in this study, as training dataset, of which 24 presented MYCN amplification. In total, 232 radiomics features were extracted. Eight features were selected through Boruta algorithm and two features were lastly chosen through Pearson correlation analysis: mean of voxel intensity histogram (p = .0082) and zone size non-uniformity (p = .038). Five-times repeated three-fold cross-validation logistic regression models yielded an area under the curve (AUC) value of 0.879 on the training set. The model was then applied to an independent validation cohort of 21 patients, of which five presented MYCN amplification. The validation of the model yielded a 0.813 AUC value, with 0.85 accuracy on previously unseen data. CONCLUSIONS: CT-based radiomics is able to predict MYCN amplification status in NB, paving the way to the in-depth analysis of imaging based biomarkers that could enhance outcomes prediction.


Assuntos
Proteína Proto-Oncogênica N-Myc , Neuroblastoma , Área Sob a Curva , Biomarcadores Tumorais/genética , Humanos , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/diagnóstico por imagem , Neuroblastoma/genética , Estudos Retrospectivos , Tomografia Computadorizada por Raios X
19.
Front Oncol ; 10: 554388, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33178583

RESUMO

Background and Aims: Pediatric adrenocortical tumors (ACTs) are very rare endocrine neoplasms in childhood. In this study, we performed a retrospective analysis of children with ACT treated at our institution by examining clinical and genetic disease features, treatment strategies, and outcomes. Methods: We retrospectively analyzed a cohort of 13 children treated at the Bambino Gesù Children's Hospital from November 2010 to March 2020. Results: The median age at diagnosis was 17 months (range = 0-82 months). The female: male ratio was 3.3/1. Mixed symptomatology (>1 hormone abnormality) was the most common presentation (46.1%). In three cases, the tumor was detected during prenatal or perinatal echographic screening. All patients presented with localized disease at diagnosis and underwent total adrenalectomy. Six patients were identified as having malignancies according to the Wieneke scoring system, five benign, and two undetermined. Seven patients underwent mitotane adjuvant therapy for 12 months. There was metastatic disease in three patients, with no correlation with age or Wieneke score. The most common sites of metastases were the liver and lungs. Metastatic patients were treated with surgery (n = 2), mitotane (n = 1), chemotherapy (n = 2) associated with anti-EGFR (n = 1), or immunotherapy with anti-PD1 (pembrolizumab) (n = 1); two patients achieved complete disease remission. Overall 2- and 5-year survival rates were 100%, with a median follow-up of 5 years (range = 2-9.5 years). Two- and 5-year disease free survival was 76.9 and 84.6%, respectively (95% confidence interval = -66.78-114.76 months). All patients are alive, 12 without disease, and one with stable disease. Genetic analyses showed TP53 germline mutations in six of eight patients analyzed (five inherited, one de novo). One patient had Beckwith-Wiedemann syndrome, with mosaic paternal uniparental disomy of chromosome 11, in both neoplastic and healthy adrenal tissue. Conclusion: We report the cases of 13 patients treated for ACT, including 12 aged <4 years at diagnosis, with a relative short time from symptoms onset. Our cohort experienced an excellent prognosis. TP53 mutation was found in 75% of tested patients (6/8) confirming the need to perform genetic tests and familial counseling in this disease.

20.
J Extracell Vesicles ; 9(1): 1774144, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32922693

RESUMO

Bone marrow (BM) is the major target organ for neuroblastoma (NB) metastasis and its involvement is associated with poor outcome. Yet, the mechanism by which NB cells invade BM is largely unknown. Tumour microenvironment represents a key element in tumour progression and mesenchymal stromal cells (MSCs) have been recognized as a fundamental part of the associated tumour stroma. Here, we show that BM-MSCs isolated from NB patients with BM involvement exhibit a greater osteogenic potential than MSCs from non-infiltrated BM. We show that BM metastasis-derived NB-cell lines secrete higher levels of exosomal miR-375, which promotes osteogenic differentiation in MSCs. Of note, clinical data demonstrate that high level of miR-375 correlates with BM metastasis in NB patients. Our findings suggest, indeed, a potential role for exosomal miR-375 in determining a favourable microenvironment in BM to promote metastatic progression. MiR-375 may, thus, represent a novel biomarker and a potential target for NB patients with BM involvement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...