Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 60(4): 2150-2173, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36609826

RESUMO

Parkinson's disease (PD) represents the most common neurodegenerative movement disorder. We recently identified 16 novel genes associated with PD. In this study, we focused the attention on the common and rare variants identified in the lysosomal K+ channel TMEM175. The study includes a detailed clinical and genetic analysis of 400 cases and 300 controls. Molecular studies were performed on patient-derived fibroblasts. The functional properties of the mutant channels were assessed by patch-clamp technique and co-immunoprecipitation. We have found that TMEM175 was highly expressed in dopaminergic neurons of the substantia nigra pars compacta and in microglia of the cerebral cortex of the human brain. Four common variants were associated with PD, including two novel variants rs2290402 (c.-10C > T) and rs80114247 (c.T1022C, p.M341T), located in the Kozak consensus sequence and TM3II domain, respectively. We also disclosed 13 novel highly penetrant detrimental mutations in the TMEM175 gene associated with PD. At least nine of these mutations (p.R35C, p. R183X, p.A270T, p.P308L, p.S348L, p. L405V, p.R414W, p.P427fs, p.R481W) may be sufficient to cause the disease, and the presence of mutations of other genes correlated with an earlier disease onset. In vitro functional analysis of the ion channel encoded by the mutated TMEM175 gene revealed a loss of the K+ conductance and a reduced channel affinity for Akt. Moreover, we observed an impaired autophagic/lysosomal proteolytic flux and an increase expression of unfolded protein response markers in patient-derived fibroblasts. These data suggest that mutations in TMEM175 gene may contribute to the pathophysiology of PD.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Doenças Neurodegenerativas/metabolismo , Canais Iônicos/metabolismo , Lisossomos/metabolismo , Neurônios Dopaminérgicos/metabolismo , Canais de Potássio/metabolismo
2.
Mol Neurodegener ; 16(1): 35, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34148545

RESUMO

BACKGROUND: Parkinson's disease (PD) is a neurodegenerative movement disorder affecting 1-5% of the general population for which neither effective cure nor early diagnostic tools are available that could tackle the pathology in the early phase. Here we report a multi-stage procedure to identify candidate genes likely involved in the etiopathogenesis of PD. METHODS: The study includes a discovery stage based on the analysis of whole exome data from 26 dominant late onset PD families, a validation analysis performed on 1542 independent PD patients and 706 controls from different cohorts and the assessment of polygenic variants load in the Italian cohort (394 unrelated patients and 203 controls). RESULTS: Family-based approach identified 28 disrupting variants in 26 candidate genes for PD including PARK2, PINK1, DJ-1(PARK7), LRRK2, HTRA2, FBXO7, EIF4G1, DNAJC6, DNAJC13, SNCAIP, AIMP2, CHMP1A, GIPC1, HMOX2, HSPA8, IMMT, KIF21B, KIF24, MAN2C1, RHOT2, SLC25A39, SPTBN1, TMEM175, TOMM22, TVP23A and ZSCAN21. Sixteen of them have not been associated to PD before, were expressed in mesencephalon and were involved in pathways potentially deregulated in PD. Mutation analysis in independent cohorts disclosed a significant excess of highly deleterious variants in cases (p = 0.0001), supporting their role in PD. Moreover, we demonstrated that the co-inheritance of multiple rare variants (≥ 2) in the 26 genes may predict PD occurrence in about 20% of patients, both familial and sporadic cases, with high specificity (> 93%; p = 4.4 × 10- 5). Moreover, our data highlight the fact that the genetic landmarks of late onset PD does not systematically differ between sporadic and familial forms, especially in the case of small nuclear families and underline the importance of rare variants in the genetics of sporadic PD. Furthermore, patients carrying multiple rare variants showed higher risk of manifesting dyskinesia induced by levodopa treatment. CONCLUSIONS: Besides confirming the extreme genetic heterogeneity of PD, these data provide novel insights into the genetic of the disease and may be relevant for its prediction, diagnosis and treatment.


Assuntos
Sequenciamento do Exoma/métodos , Predisposição Genética para Doença/genética , Doença de Parkinson/genética , Adulto , Idade de Início , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem
3.
Development ; 148(10)2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33999993

RESUMO

In mammals, the pre-gastrula proximal epiblast gives rise to primordial germ cells (PGCs) or somatic precursors in response to BMP4 and WNT signaling. Entry into the germline requires activation of a naïve-like pluripotency gene regulatory network (GRN). Recent work has shown that suppression of OTX2 expression in the epiblast by BMP4 allows cells to develop a PGC fate in a precise temporal window. However, the mechanisms by which OTX2 suppresses PGC fate are unknown. Here, we show that, in mice, OTX2 prevents epiblast cells from activating the pluripotency GRN by direct repression of Oct4 and Nanog. Loss of this control during PGC differentiation in vitro causes widespread activation of the pluripotency GRN and a deregulated response to LIF, BMP4 and WNT signaling. These abnormalities, in specific cell culture conditions, result in massive germline entry at the expense of somatic mesoderm differentiation. Increased generation of PGCs also occurs in mutant embryos. We propose that the OTX2-mediated repressive control of Oct4 and Nanog is the basis of the mechanism that determines epiblast contribution to germline and somatic lineage.


Assuntos
Células Germinativas/citologia , Camadas Germinativas/citologia , Proteína Homeobox Nanog/antagonistas & inibidores , Fator 3 de Transcrição de Octâmero/antagonistas & inibidores , Fatores de Transcrição Otx/metabolismo , Animais , Proteína Morfogenética Óssea 4/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento/genética , Fator Inibidor de Leucemia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Pluripotentes/citologia , Via de Sinalização Wnt/fisiologia
4.
Stem Cell Reports ; 9(5): 1642-1659, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29056334

RESUMO

Embryonic stem cells (ESCs) cultured in leukemia inhibitory factor (LIF) plus fetal bovine serum (FBS) exhibit heterogeneity in the expression of naive and primed transcription factors. This heterogeneity reflects the dynamic condition of ESCs and their versatility to promptly respond to signaling effectors promoting naive or primed pluripotency. Here, we report that ESCs lacking Nanog or overexpressing Otx2 exhibit an early primed identity in LIF + FBS and fail to convert into 2i-induced naive state. Conversely, Otx2-null ESCs possess naive identity features in LIF + FBS similar to Nanog-overexpressing ESCs and convert poorly into FGF-induced early primed state. When both Nanog and Otx2 are inactivated, ESCs cultured in LIF + FBS exhibit primed identity and weakened ability to convert into naive state. These data suggest that, through mutual antagonism, NANOG and OTX2 specify the heterogeneous identity of ESCs cultured in LIF + FBS and individually predispose them for optimal response to naive or primed inducing factors.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias Murinas/citologia , Proteína Homeobox Nanog/genética , Fatores de Transcrição Otx/genética , Animais , Linhagem Celular , Meios de Cultura Livres de Soro/farmacologia , Fator Inibidor de Leucemia/farmacologia , Camundongos , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/metabolismo , Proteína Homeobox Nanog/metabolismo , Fatores de Transcrição Otx/metabolismo
5.
Cell Rep ; 15(12): 2651-64, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27292645

RESUMO

Mouse embryonic stem cells (ESCs) and the inner cell mass (ICM)-derived epiblast exhibit naive pluripotency. ESC-derived epiblast stem cells (EpiSCs) and the postimplantation epiblast exhibit primed pluripotency. Although core pluripotency factors are well-characterized, additional regulators, including Otx2, recently have been shown to function during the transition from naive to primed pluripotency. Here we uncover a role for Otx2 in the control of the naive pluripotent state. We analyzed Otx2-binding activity in ESCs and EpiSCs and identified Nanog, Oct4, and Sox2 as direct targets. To unravel the Otx2 transcriptional network, we targeted the strongest Otx2-binding site in the Nanog promoter, finding that this site modulates the size of specific ESC-subtype compartments in cultured cells and promotes Nanog expression in vivo, predisposing ICM differentiation to epiblast. Otx2-mediated Nanog regulation thus contributes to the integrity of the ESC state and cell lineage specification in preimplantation development.


Assuntos
Blastocisto/citologia , Células-Tronco Embrionárias/citologia , Camadas Germinativas/citologia , Proteína Homeobox Nanog/genética , Fatores de Transcrição Otx/metabolismo , Regiões Promotoras Genéticas/genética , Animais , Sítios de Ligação , Blastocisto/efeitos dos fármacos , Blastocisto/metabolismo , Compartimento Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quimera/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Células-Tronco Embrionárias/metabolismo , Endoderma/citologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Camadas Germinativas/efeitos dos fármacos , Camadas Germinativas/metabolismo , Fator Inibidor de Leucemia/farmacologia , Mesoderma/citologia , Camundongos , Mutação/genética , Proteína Homeobox Nanog/metabolismo , Fatores de Transcrição Otx/genética , Ligação Proteica/efeitos dos fármacos
6.
Dev Biol ; 373(1): 176-83, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23117062

RESUMO

Understanding the molecular basis underlying the neurogenesis of mesencephalic-diencephalic Dopaminergic (mdDA) neurons is a major task fueled by their relevance in controlling locomotor activity and emotion and their involvement in neurodegenerative and psychiatric diseases. Increasing evidence suggests that mdDA neurons of the substantia nigra pars compacta (SNpc) and ventral tegmental area (VTA) represent two main distinct neuronal populations, which, in turn, include specific neuronal subsets. Relevant studies provided important results on mdDA neurogenesis, but, nevertheless, have not yet clarified how the identity of mdDA neuronal subtypes is established and, in particular, whether neurogenic factors may direct progenitors towards the differentiation of specific mdDA neuronal subclasses. The transcription factor Otx2 is required for the neurogenesis of mesencephalic DA (mesDA) neurons and to control neuron subtype identity and sensitivity to the MPTP neurotoxin in the adult VTA. Here we studied whether Otx2 is required in mdDA progenitors for the generation of specific mdDA neuronal subtypes. We found that although expressed in virtually all mdDA progenitors, Otx2 is required selectively for the differentiation of VTA neuronal subtypes expressing Ahd2 and/or Calb but not for those co-expressing Girk2 and glyco-Dat. Moreover, mild over-expression of Otx2 in SNpc progenitors and neurons is sufficient to rescue En1 haploinsufficiency-dependent defects, such as progressive loss and increased MPTP sensitivity of SNpc neurons. Collectively, these data suggest that mdDA progenitors exhibit differential sensitivity to Otx2, which selectively influences the generation of a large and specific subset of VTA neurons. In addition, these data suggest that Otx2 and En1 may share similar properties and control survival and vulnerability to MPTP neurotoxin respectively in VTA and SNpc.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Proteínas de Homeodomínio/metabolismo , Neurogênese/fisiologia , Fatores de Transcrição Otx/metabolismo , Área Tegmentar Ventral/citologia , Área Tegmentar Ventral/embriologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/administração & dosagem , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Animais , Contagem de Células , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Camundongos
7.
Dev Neurobiol ; 71(8): 665-79, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21309083

RESUMO

Mesencephalic-diencephalic dopaminergic (mdDA) neurons play a relevant role in the control of movement, behavior, and cognition. Indeed loss and/or abnormal functioning of mdDA neurons are responsible for Parkinson's disease as well as for addictive and psychiatric disorders. In the last years a wealth of information has been provided on gene functions controlling identity, fate, and proliferation of mdDA progenitors. This review will focus on the role exerted by Otx genes in early decisions regulating sequential steps required for the neurogenesis of mesencephalic dopaminergic (mesDA) neurons. In this context, the regulatory network involving Otx functional interactions with signaling molecules and transcription factors required to promote or prevent the development of mesDA neurons will be analyzed in detail.


Assuntos
Dopamina/metabolismo , Mesencéfalo/crescimento & desenvolvimento , Neurogênese/fisiologia , Neurônios/metabolismo , Fatores de Transcrição Otx/genética , Humanos , Mesencéfalo/metabolismo , Fatores de Transcrição Otx/metabolismo
8.
Mol Neurobiol ; 43(2): 107-13, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21086067

RESUMO

Mesencephalic and diencephalic dopaminergic (mdDA) progenitors generate two major groups of neurons corresponding to the A9 neurons of the substantia nigra pars compacta (SNpc) and the A10 neurons of the ventral tegmental area (VTA). MdDA neurons control motor, sensorimotor and motivated behaviour and their degeneration or abnormal functioning is associated to Parkinson's disease and psychiatric disorders. Although relevant advances have been made, the molecular basis controlling identity, survival and vulnerability to neurodegeneration of SNpc and VTA neurons remains poorly understood. Here, we will review recent findings on the role exerted by the transcription factor Otx2 in adult mdDA neurons. Otx2 expression is restricted to a relevant fraction of VTA neurons and absent in the SNpc. In particular, Otx2 is prevalently excluded from neurons of the dorsal-lateral VTA, which expressed Girk2 and high level of the dopamine transporter (Dat). Loss and gain of function mouse models revealed that Otx2 controls neuron subtype identity by antagonizing molecular and functional features of the dorsal-lateral VTA such as Girk2 and Dat expression as well as vulnerability to the parkinsonian MPTP toxin. Furthermore, when ectopically expressed in the SNpc, Otx2 suppresses Dat expression and confers efficient neuroprotection to MPTP toxicity by suppressing efficient DA uptake.


Assuntos
Envelhecimento/metabolismo , Dopamina/metabolismo , Mesencéfalo/metabolismo , Neurônios/metabolismo , Fatores de Transcrição Otx/metabolismo , Animais , Diencéfalo/metabolismo
9.
Nat Neurosci ; 13(12): 1481-8, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21057506

RESUMO

Mesencephalic-diencephalic dopaminergic neurons control locomotor activity and emotion and are affected in neurodegenerative and psychiatric diseases. The homeoprotein Otx2 is restricted to ventral tegmental area (VTA) neurons that are prevalently complementary to those expressing Girk2 and glycosylated active form of the dopamine transporter (Dat). High levels of glycosylated Dat mark neurons with efficient dopamine uptake and pronounced vulnerability to Parkinsonian degeneration. We found that Otx2 controls neuron subtype identity by antagonizing molecular and functional features of dorsal-lateral VTA, such as Girk2 and Dat expression. Otx2 limited the number of VTA neurons with efficient dopamine uptake and conferred resistance to the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-HCl (MPTP) neurotoxin. Ectopic Otx2 expression also provided neurons of the substantia nigra with efficient neuroprotection to MPTP. These findings indicate that Otx2 is required to specify neuron subtype identity in VTA and may antagonize vulnerability to the Parkinsonian toxin MPTP.


Assuntos
Intoxicação por MPTP/prevenção & controle , Neurônios/classificação , Neurônios/fisiologia , Fatores de Transcrição Otx/fisiologia , Área Tegmentar Ventral/citologia , Área Tegmentar Ventral/fisiologia , Animais , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/patologia , Células-Tronco Embrionárias/fisiologia , Intoxicação por MPTP/metabolismo , Intoxicação por MPTP/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Transgênicos , Neurônios/patologia , Área Tegmentar Ventral/patologia
10.
Mech Dev ; 126(10): 882-97, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19615442

RESUMO

Genetic and embryological experiments demonstrated that the visceral endoderm (VE) is essential for positioning the primitive streak at one pole of the embryo and head morphogenesis through antagonism of the Wnt and Nodal signaling pathways. The transcription factor Otx2 is required for VE anteriorization and specification of rostral neuroectoderm at least in part by controlling the expression of Dkk1 and Lefty1. Here, we investigated the relevance of the Otx2 transcriptional control in these processes. Otx2 protein is encoded by different mRNAs variants, which, on the basis of their transcription start site, may be distinguished in distal and proximal. Distal isoforms are prevalently expressed in the epiblast and neuroectoderm, while proximal isoforms prevalently in the VE. Selective inactivation of Otx2 variants reveals that distal isoforms are not required for gastrulation, but essential for maintenance of forebrain and midbrain identities; conversely, proximal isoforms control VE anteriorization and, indirectly, primitive streak positioning through the activation of Dkk1 and Lefty1. Moreover, in these mutants the expression of proximal isoforms is not affected by the lack of distal mRNAs and vice versa. Taken together these findings indicate that proximal and distal isoforms, whose expression is independently regulated in the VE and epiblast-derived neuroectoderm, functionally cooperate to provide these tissues with the sufficient level of Otx2 necessary to promote a normal development. Furthermore, we discovered that in the VE the expression of Otx2 isoforms is tightly controlled at single cell level, and we hypothesize that this molecular diversity may potentially confer specific functional properties to different subsets of VE cells.


Assuntos
Endoderma/citologia , Cabeça/embriologia , Morfogênese , Fatores de Transcrição Otx/genética , RNA Mensageiro/genética , Vísceras/citologia , Animais , Sequência de Bases , Primers do DNA , Perfilação da Expressão Gênica , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intercelular/genética , Fatores de Determinação Direita-Esquerda/genética , Mesencéfalo/embriologia , Camundongos , Prosencéfalo/embriologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
J Neurosci ; 28(37): 9271-6, 2008 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-18784307

RESUMO

The homeobox-containing transcription factor Otx2 is crucially involved in fate determination of midbrain neurons. Mutant mice, in which Otx2 was conditionally inactivated by a Cre recombinase expressed under the transcriptional control of the Engrailed1 (En1) gene (En1(cre/+); Otx2(flox/flox)), show a reduced number of dopaminergic neurons and an increased number of serotonergic neurons in the ventral midbrain. Despite these developmental anatomical alterations, En1(cre/+); Otx2(flox/flox) adult mice display normal motor function. Here, we further investigated the neurological consequences of Otx2 inactivation in adult En1(cre/+); Otx2(flox/flox) mice. Adult En1(cre/+); Otx2(flox/flox) mice showed increased serotonin (5-HT) levels in the pons, ventral midbrain, hippocampus (CA3 subfield), and cerebral cortex, as indicated by HPLC and immunohistochemistry. Conversely, SERT (5-HT transporter) levels were decreased in conditional mutant brains. As a consequence of this increased 5-HT hyperinnervation, En1(cre/+); Otx2(flox/flox) mice were resistant to generalized seizures induced by the glutamate agonist kainic acid (KA). Indeed, prolonged pretreatment of En1(cre/+); Otx2(flox/flox) mice with the 5-HT synthesis inhibitor para-chlorophenylalanine (pCPA) restored brain 5-HT content to control levels, fully reestablishing KA seizure susceptibility. Accordingly, c-fos mRNA induction after KA was restricted to the hippocampus in En1(cre/+); Otx2(flox/flox) mice, whereas a widespread c-fos mRNA labeling was observed throughout the brain of En1(cre/+); Otx2(flox/flox) mice pretreated with pCPA. These results clearly show that increased brain 5-HT levels are responsible for seizure resistance in En1(cre/+); Otx2(flox/flox) mice and confirm the important role of 5-HT in the control of seizure spread.


Assuntos
Mutação , Fatores de Transcrição Otx/genética , Convulsões/genética , Serotonina/metabolismo , Análise de Variância , Animais , Inibidores Enzimáticos/farmacologia , Fenclonina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Proteínas de Homeodomínio/genética , Ácido Caínico , Mesencéfalo/efeitos dos fármacos , Mesencéfalo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-fos/genética , RNA Mensageiro/metabolismo , Convulsões/induzido quimicamente , Serotonina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Fatores de Tempo
12.
Development ; 135(20): 3459-70, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18820178

RESUMO

Meso-diencephalic dopaminergic (mdDA) neurons control voluntary movement, cognition and the reward response, and their degeneration is associated with Parkinson's disease (PD). Prospective cell transplantation therapies for PD require full knowledge of the developmental pathways that control mdDA neurogenesis. We have previously shown that Otx2 is required for the establishment of the mesencephalic field and molecular code of the entire ventral mesencephalon (VM). Here, we investigate whether Otx2 is a specific determinant of mesencephalic dopaminergic (mesDA) neurogenesis by studying mouse mutants that conditionally overexpress or lack Otx2. Our data show that Otx2 overexpression in the VM causes a dose-dependent and selective increase in both mesDA progenitors and neurons, which correlates with a remarkable and specific enhancement in the proliferating activity of mesDA progenitors. Consistently, lack of Otx2 in the VM specifically affects the proliferation of Sox2+ mesDA progenitors and causes their premature post-mitotic transition. Analysis of the developmental pathway that controls the differentiation of mesDA neurons shows that, in the absence of Otx2, the expression of Lmx1a and Msx1, and the proneural genes Ngn2 and Mash1 is not activated in Sox2+ mesDA progenitors, which largely fail to differentiate into Nurr1+ mesDA precursors. Furthermore, proliferation and differentiation abnormalities exhibit increasing severity along the anterior-posterior (AP) axis of the VM. These findings demonstrate that Otx2, through an AP graded effect, is intrinsically required to control proliferation and differentiation of mesDA progenitors. Thus, our data provide new insights into the mechanism of mesDA neuron specification and suggest Otx2 as a potential target for cell replacement-based therapeutic approaches in PD.


Assuntos
Dopamina/metabolismo , Células-Tronco Embrionárias/citologia , Mesencéfalo/citologia , Mesencéfalo/embriologia , Fatores de Transcrição Otx/fisiologia , Animais , Padronização Corporal/genética , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Proliferação de Células , Embrião de Mamíferos , Imuno-Histoquímica , Hibridização In Situ , Mesencéfalo/metabolismo , Camundongos , Fatores de Transcrição Otx/genética , Fatores de Transcrição Otx/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...