Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gels ; 9(9)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37754414

RESUMO

Despite process similarities, distinctive manufacturing technologies offer hyaluronic acid dermal fillers with different in vitro physicochemical and rheological properties due to peculiar crosslinked hydrogel networks. A better understanding of dermal filler properties could provide specific clinical indications and expectations with more accurate performance correlations. In this study, with an emphasis on the degree of modification, hyaluronic acid concentration and molecular weight, these process parameters were able to modulate dermal filler properties, especially rheology. Moreover, an extensive characterization of commercial hyaluronic acid injectables of the Hyal System line was described to present product properties and help to elucidate related clinical effects. Standardized methodologies were applied to correlate in vitro parameters with feasible clinical indications. In view of an optimized dermal filler design, the results of the extrudability measurements allowed the quantification of the effect of hydrogel composition, rheological properties and needle size on injectability. Composition, dynamic viscosity and needle size showed an impactful influence on hydrogel extrudability. Finally, the positive influence of 200 KDa hyaluronic acid in comparison to fragments of ether-crosslinked hyaluronic acid on fibroblast recognition were shown with a migration assay.

2.
J Pharm Sci ; 111(9): 2505-2513, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35405122

RESUMO

During osteoarthritis (OA) development, chondrocytes progressively decompensate, upregulating proteolytic enzymes and reducing the key growth factors involved in promoting chondrocyte anabolism. A combined therapeutic approach is needed to address this multifactorial pathology, which affects the whole joint. Based on the literature, three promising targets for OA treatment have been selected: MMP3 (matrix metallopeptidase 3), TRPV4 (transient receptor potential cation channel subfamily V member 4) and mTOR (mammalian target of rapamycin). In this study, a novel water-soluble and biocompatible amphiphilic polymer named "sHA-oleylamide" was synthesized and screened from a series of hyaluronic acid derivatives for its anticatabolic activity. This MMP inhibitor showed no cytotoxicity, and in an in vitro model of inflammatory OA, it reversed the inflammatory outcome at a concentration of 0.011 mg/mL. The ability of sHA-oleylamide to form 20-50 nm micelles in water with a critical micelle concentration of 0.27±0.1 mg/mL, was confirmed by TEM images and measured by Nile red staining. RN-1747 and rapamycin molecules were successfully loaded in sHA-oleylamide, previously prepared at 12 mg/mL in PBS; both formulations were stable, sterile and confirmed in vitro to have mTOR inhibition by rapamycin and TRPV4 activation activity by RN-1747. The controlled release of RN-1747 from the micellar formulation with sHA-oleylamide showed that only approximately 60% of the total loaded RN-1747 was released within 7 days. These micellar formulations can potentially increase the bioavailability and pharmaceutical efficacy of the selected active molecules, combining their anti-catabolic and pro-anabolic activities and making them suitable for i.a. administration as OA treatments.


Assuntos
Ácido Hialurônico , Osteoartrite , Sistemas de Liberação de Medicamentos , Humanos , Ácido Hialurônico/uso terapêutico , Micelas , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Osteoartrite/patologia , Sirolimo , Sulfatos , Serina-Treonina Quinases TOR/metabolismo , Canais de Cátion TRPV , Água/metabolismo
3.
Pharmaceutics ; 13(9)2021 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-34575526

RESUMO

Interstitial cystitis (IC) or painful bladder syndrome is a chronic dysfunction due to an inflammatory condition, characterized by bladder pain and urinary frequency. Currently, no gold standard therapy is available since IC does not respond to conventional ones. Given these premises, the aim of this work was the in vitro characterization of biological properties (mucoadhesion and anti-inflammatory activity) of a commercial product (HydealCyst-HydC) based on hyaluronic acid (HA) and the benzyl ester of HA (Hydeal-D®) intended for bladder instillation to restore and/or protect the urothelial layer of glycosamino glycans (GAGs). The in vitro characterization demonstrated that an interaction product is formed between HA and Hydeal-D® that has a role in the rheological behavior and mucoadhesive properties. HA was identified as a key component to form the mucoadhesive joint, while the interaction of HA with Hydeal-D® improved polysaccharide stability and prolonged the activity ex vivo. Moreover, HydC is cytocompatible with urothelial cells (HTB-4) and possesses an anti-inflammatory effect towards these cells by decreasing the secretion of IL-6 and IL-8, which were both increased in patients with IC, and by increasing the secretion of sulfated GAGs. These two findings, along with the resilience properties of the formulation due to mucoadhesion, suggest the active role of HydC in protecting and restoring urothelium homeostasis.

4.
Osteoarthr Cartil Open ; 3(2): 100159, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36474988

RESUMO

Objective: Osteoarthritis (OA) is a painful degenerative disease of the whole joint structure, including articular cartilage, synovial fluid, and subchondral bone. Hyaluronic acid (HA), an anionic non-sulfated glycosaminoglycan, is commonly used for intra-articular (IA) treatment in OA, while bisphosphonates (BPs) are anti-resorptive drugs that act on the bone. Here, a novel conjugate with a covalent and hydrolysable linker between HA and alendronate (ALD) was designed as an attractive therapeutic strategy for IA drug delivery. Design: The HA-ALD derivative was synthesized and tested in comparison with a simple mixture of HA and ALD for in vitro ALD release, rheological properties, cytotoxicity towards osteoblasts and chondrocytes and in an in vitro efficacy assay of OA inflammatory model on bovine cartilage explants. Results: The structure of HA-ALD was elucidated exhibiting no depolymerization and efficient drug incorporation. The controlled ALD release in vitro was slower compared to the simple mixture of HA and ALD; moreover, the derivative showed calcium-tuned rheological properties. The absence of cytotoxicity towards osteoblasts and chondrocytes was shown for up to 7 days, and the viability of chondrocytes was confirmed by fluorescence microscopy. Finally, a reduction in collagen release and MMP-13 expression was measured in the OA inflammatory model. Conclusion: This new HA-ALD derivative opens the door to a new approach for OA treatment, as it combines viscosupplementation and biological effects of HA with the pharmacological activity of BPs. Prolonged ALD release increased rheological properties and beneficial effect against cartilage degradation make it a promising IA therapy for OA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...