Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744970

RESUMO

The multifunctional RNA-binding protein hnRNPL is implicated in antibody class switching but its broader function in B cells is unknown. Here, we show that hnRNPL is essential for B cell activation, germinal center formation, and antibody responses. Upon activation, hnRNPL-deficient B cells show proliferation defects and increased apoptosis. Comparative analysis of RNA-seq data from activated B cells and another eight hnRNPL-depleted cell types reveals common effects on MYC and E2F transcriptional programs required for proliferation. Notably, while individual gene expression changes are cell type specific, several alternative splicing events affecting histone modifiers like KDM6A and SIRT1, are conserved across cell types. Moreover, hnRNPL-deficient B cells show global changes in H3K27me3 and H3K9ac. Epigenetic dysregulation after hnRNPL loss could underlie differential gene expression and upregulation of lncRNAs, and explain common and cell type-specific phenotypes, such as dysfunctional mitochondria and ROS overproduction in mouse B cells. Thus, hnRNPL is essential for the resting-to-activated B cell transition by regulating transcriptional programs and metabolism, at least in part through the alternative splicing of several histone modifiers.

2.
Proc Natl Acad Sci U S A ; 121(17): e2312330121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38625936

RESUMO

The apolipoprotein B messenger RNA editing enzyme, catalytic polypeptide (APOBEC) family is composed of nucleic acid editors with roles ranging from antibody diversification to RNA editing. APOBEC2, a member of this family with an evolutionarily conserved nucleic acid-binding cytidine deaminase domain, has neither an established substrate nor function. Using a cellular model of muscle differentiation where APOBEC2 is inducibly expressed, we confirmed that APOBEC2 does not have the attributed molecular functions of the APOBEC family, such as RNA editing, DNA demethylation, and DNA mutation. Instead, we found that during muscle differentiation APOBEC2 occupied a specific motif within promoter regions; its removal from those regions resulted in transcriptional changes. Mechanistically, these changes reflect the direct interaction of APOBEC2 with histone deacetylase (HDAC) transcriptional corepressor complexes. We also found that APOBEC2 could bind DNA directly, in a sequence-specific fashion, suggesting that it functions as a recruiter of HDAC to specific genes whose promoters it occupies. These genes are normally suppressed during muscle cell differentiation, and their suppression may contribute to the safeguarding of muscle cell fate. Altogether, our results reveal a unique role for APOBEC2 within the APOBEC family.


Assuntos
Cromatina , Proteínas Musculares , Desaminases APOBEC/genética , Desaminase APOBEC-1/genética , Diferenciação Celular/genética , Cromatina/genética , Citidina Desaminase/metabolismo , DNA , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Mioblastos/metabolismo , RNA Mensageiro/genética , Animais , Camundongos
3.
Front Immunol ; 15: 1353138, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529289

RESUMO

Introduction: BAP1 is a deubiquitinase (DUB) of the Ubiquitin C-terminal Hydrolase (UCH) family that regulates gene expression and other cellular processes, through its direct catalytic activity on the repressive epigenetic mark histone H2AK119ub, as well as on several other substrates. BAP1 is also a highly important tumor suppressor, expressed and functional across many cell types and tissues. In recent work, we demonstrated a cell intrinsic role of BAP1 in the B cell lineage development in murine bone marrow, however the role of BAP1 in the regulation of B cell mediated humoral immune response has not been previously explored. Methods and results: In the current study, we demonstrate that a B-cell intrinsic loss of BAP1 in activated B cells in the Bap1 fl/fl Cγ1-cre murine model results in a severe defect in antibody production, with altered dynamics of germinal centre B cell, memory B cell, and plasma cell numbers. At the cellular and molecular level, BAP1 was dispensable for B cell immunoglobulin class switching but resulted in an impaired proliferation of activated B cells, with genome-wide dysregulation in histone H2AK119ub levels and gene expression. Conclusion and discussion: In summary, our study establishes the B-cell intrinsic role of BAP1 in antibody mediated immune response and indicates its central role in the regulation of the genome-wide landscapes of histone H2AK119ub and downstream transcriptional programs of B cell activation and humoral immunity.


Assuntos
Linfócitos B , Proteínas Supressoras de Tumor , Ubiquitina Tiolesterase , Animais , Camundongos , Anticorpos/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Histonas/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
4.
Nucleic Acids Res ; 52(2): 784-800, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38000394

RESUMO

Activation-induced cytidine deaminase (AID) interacts with replication protein A (RPA), the major ssDNA-binding protein, to promote deamination of cytosine to uracil in transcribed immunoglobulin (Ig) genes. Uracil-DNA glycosylase (UNG) acts in concert with AID during Ig diversification. In addition, UNG preserves genome integrity by base-excision repair (BER) in the overall genome. How UNG is regulated to support both mutagenic processing and error-free repair remains unknown. UNG is expressed as two isoforms, UNG1 and UNG2, which both contain an RPA-binding helix that facilitates uracil excision from RPA-coated ssDNA. However, the impact of this interaction in antibody diversification and genome maintenance has not been investigated. Here, we generated B-cell clones with targeted mutations in the UNG RPA-binding motif, and analysed class switch recombination (CSR), mutation frequency (5' Ig Sµ), and genomic uracil in clones representing seven Ung genotypes. We show that the UNG:RPA interaction plays a crucial role in both CSR and repair of AID-induced uracil at the Ig loci. By contrast, the interaction had no significant impact on total genomic uracil levels. Thus, RPA coordinates UNG during CSR and pre-replicative repair of mutagenic uracil in ssDNA but is not essential in post-replicative and canonical BER of uracil in dsDNA.


Assuntos
Proteína de Replicação A , Uracila-DNA Glicosidase , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Reparo do DNA/genética , DNA de Cadeia Simples/genética , Switching de Imunoglobulina/genética , Isotipos de Imunoglobulinas/genética , Imunoglobulinas/genética , Mutagênicos , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Uracila/metabolismo , Uracila-DNA Glicosidase/genética , Uracila-DNA Glicosidase/metabolismo , Humanos , Animais , Camundongos
5.
J Exp Med ; 220(9)2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37310381

RESUMO

Positively selected germinal center B cells (GCBC) can either resume proliferation and somatic hypermutation or differentiate. The mechanisms dictating these alternative cell fates are incompletely understood. We show that the protein arginine methyltransferase 1 (Prmt1) is upregulated in murine GCBC by Myc and mTORC-dependent signaling after positive selection. Deleting Prmt1 in activated B cells compromises antibody affinity maturation by hampering proliferation and GCBC light zone to dark zone cycling. Prmt1 deficiency also results in enhanced memory B cell generation and plasma cell differentiation, albeit the quality of these cells is compromised by the GCBC defects. We further demonstrate that Prmt1 intrinsically limits plasma cell differentiation, a function co-opted by B cell lymphoma (BCL) cells. Consistently, PRMT1 expression in BCL correlates with poor disease outcome, depends on MYC and mTORC1 activity, is required for cell proliferation, and prevents differentiation. Collectively, these data identify PRMT1 as a determinant of normal and cancerous mature B cell proliferation and differentiation balance.


Assuntos
Linfócitos B , Proteína-Arginina N-Metiltransferases , Animais , Camundongos , Afinidade de Anticorpos , Diferenciação Celular , Centro Germinativo , Proteína-Arginina N-Metiltransferases/genética , Proliferação de Células
6.
iScience ; 26(1): 105852, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36654860

RESUMO

Elimination of self-reactive T cells in the thymus is critical to establish T-cell tolerance. A growing body of evidence suggests a role for thymic B cells in the elimination of self-reactive thymocytes. To specifically address the role of thymic B cells in central tolerance, we investigated the phenotype of thymic B cells in various mouse strains, including non-obese diabetic (NOD) mice, a model of autoimmune diabetes. We noted that isotype switching of NOD thymic B cells is reduced as compared to other, autoimmune-resistant, mouse strains. To determine the impact of B cell isotype switching on thymocyte selection and tolerance, we generated NOD.AID-/- mice. Diabetes incidence was enhanced in these mice. Moreover, we observed reduced clonal deletion and a resulting increase in self-reactive CD4+ T cells in NOD.AID-/- mice relative to NOD controls. Together, this study reveals that AID expression in thymic B cells contributes to T-cell tolerance.

7.
Sci Adv ; 8(34): eabq0008, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36001653

RESUMO

Immunoglobulin class switch recombination (CSR) plays critical roles in controlling infections and inflammatory tissue injuries. Here, we show that AFF3, a candidate gene for both rheumatoid arthritis and type 1 diabetes, is a molecular facilitator of CSR with an isotype preference. Aff3-deficient mice exhibit low serum levels of immunoglobulins, predominantly immunoglobulin G2c (IgG2c) followed by IgG1 and IgG3 but not IgM. Furthermore, Aff3-deficient mice show weak resistance to Plasmodium yoelii infection, confirming that Aff3 modulates immunity to this pathogen. Mechanistically, the AFF3 protein binds to the IgM and IgG1 switch regions via a C-terminal domain, and Aff3 deficiency reduces the binding of AID to the switch regions less efficiently. One AFF3 risk allele for rheumatoid arthritis is associated with high mRNA expression of AFF3, IGHG2, and IGHA2 in human B cells. These findings demonstrate that AFF3 directly regulates CSR by facilitating the recruitment of AID to the switch regions.

8.
Biochem J ; 479(4): 561-580, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35136964

RESUMO

Adenosine-to-inosine conversion at position 34 (A34-to-I) of certain tRNAs is essential for expanding their decoding capacity. This reaction is catalyzed by the adenosine deaminase acting on tRNA (ADAT) complex, which in Eukarya is formed by two subunits: ADAT2 and ADAT3. We herein identified and thoroughly characterized the ADAT molecules from the protozoan pathogen Trypanosoma cruzi, the causative agent of Chagas Disease. TcADAT2 and TcADAT3 spontaneously form a catalytically active complex, as shown by expression in engineered bacteria and/or by the increased ex vivo tRNA A-to-I deamination activity of T. cruzi epimastigotes overexpressing TcADAT subunits. Importantly, enhanced TcADAT2/3 activity in transgenic parasites caused a shift in their in vivo tRNAThrAGU signature, which correlated with significant changes in the expression of the Thr-rich TcSMUG proteins. To our knowledge, this is the first evidence indicating that T. cruzi tRNA editing can be modulated in vivo, in turn post-transcriptionally changing the expression of specific genes. Our findings suggest tRNA editing/availability as a forcible step in controlling gene expression and driving codon adaptation in T. cruzi. Moreover, we unveil certain differences between parasite and mammalian host tRNA editing and processing, such as cytosine-to-uridine conversion at position 32 of tRNAThrAGU in T. cruzi, that may be exploited for the identification of novel druggable targets of intervention.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Animais , Doença de Chagas/genética , Expressão Gênica , Mamíferos , Mucinas , Processamento Pós-Transcricional do RNA , Trypanosoma cruzi/genética
9.
Nature ; 600(7888): 324-328, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34819670

RESUMO

Activation-induced cytidine deaminase (AID) catalyses the deamination of deoxycytidines to deoxyuracils within immunoglobulin genes to induce somatic hypermutation and class-switch recombination1,2. AID-generated deoxyuracils are recognized and processed by subverted base-excision and mismatch repair pathways that ensure a mutagenic outcome in B cells3-6. However, why these DNA repair pathways do not accurately repair AID-induced lesions remains unknown. Here, using a genome-wide CRISPR screen, we show that FAM72A is a major determinant for the error-prone processing of deoxyuracils. Fam72a-deficient CH12F3-2 B cells and primary B cells from Fam72a-/- mice exhibit reduced class-switch recombination and somatic hypermutation frequencies at immunoglobulin and Bcl6 genes, and reduced genome-wide deoxyuracils. The somatic hypermutation spectrum in B cells from Fam72a-/- mice is opposite to that observed in mice deficient in uracil DNA glycosylase 2 (UNG2)7, which suggests that UNG2 is hyperactive in FAM72A-deficient cells. Indeed, FAM72A binds to UNG2, resulting in reduced levels of UNG2 protein in the G1 phase of the cell cycle, coinciding with peak AID activity. FAM72A therefore causes U·G mispairs to persist into S phase, leading to error-prone processing by mismatch repair. By disabling the DNA repair pathways that normally efficiently remove deoxyuracils from DNA, FAM72A enables AID to exert its full effects on antibody maturation. This work has implications in cancer, as the overexpression of FAM72A that is observed in many cancers8 could promote mutagenesis.


Assuntos
Linfócitos B , DNA Glicosilases , Reparo de Erro de Pareamento de DNA , Switching de Imunoglobulina , Proteínas de Membrana , Mutação , Proteínas de Neoplasias , Hipermutação Somática de Imunoglobulina , Animais , Feminino , Humanos , Camundongos , Linfócitos B/metabolismo , Sistemas CRISPR-Cas , DNA Glicosilases/antagonistas & inibidores , DNA Glicosilases/metabolismo , Epistasia Genética , Células HEK293 , Switching de Imunoglobulina/genética , Região de Troca de Imunoglobulinas/genética , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Proteínas de Neoplasias/deficiência , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Hipermutação Somática de Imunoglobulina/genética
10.
Blood ; 138(3): 246-258, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34292322

RESUMO

Most cancers become more dangerous by the outgrowth of malignant subclones with additional DNA mutations that favor proliferation or survival. Using chronic lymphocytic leukemia (CLL), a disease that exemplifies this process and is a model for neoplasms in general, we created transgenic mice overexpressing the enzyme activation-induced deaminase (AID), which has a normal function of inducing DNA mutations in B lymphocytes. AID not only allows normal B lymphocytes to develop more effective immunoglobulin-mediated immunity, but is also able to mutate nonimmunoglobulin genes, predisposing to cancer. In CLL, AID expression correlates with poor prognosis, suggesting a role for this enzyme in disease progression. Nevertheless, direct experimental evidence identifying the specific genes that are mutated by AID and indicating that those genes are associated with disease progression is not available. To address this point, we overexpressed Aicda in a murine model of CLL (Eµ-TCL1). Analyses of TCL1/AID mice demonstrate a role for AID in disease kinetics, CLL cell proliferation, and the development of cancer-related target mutations with canonical AID signatures in nonimmunoglobulin genes. Notably, our mouse models can accumulate mutations in the same genes that are mutated in human cancers. Moreover, some of these mutations occur at homologous positions, leading to identical or chemically similar amino acid substitutions as in human CLL and lymphoma. Together, these findings support a direct link between aberrant AID activity and CLL driver mutations that are then selected for their oncogenic effects, whereby AID promotes aggressiveness in CLL and other B-cell neoplasms.


Assuntos
Citidina Desaminase/genética , Regulação Leucêmica da Expressão Gênica , Leucemia Linfocítica Crônica de Células B/genética , Regulação para Cima , Animais , Modelos Animais de Doenças , Humanos , Leucemia Linfocítica Crônica de Células B/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação
11.
Front Immunol ; 12: 626418, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33912157

RESUMO

BAP1 is a deubiquitinase (DUB) of the Ubiquitin C-terminal Hydrolase (UCH) family that regulates gene expression and other cellular processes, via deubiquitination of histone H2AK119ub and other substrates. BAP1 is an important tumor suppressor in human, expressed and functional across many cell-types and tissues, including those of the immune system. B lymphocytes are the mediators of humoral immune response, however the role of BAP1 in B cell development and physiology remains poorly understood. Here we characterize a mouse line with a selective deletion of BAP1 within the B cell lineage (Bap1fl/fl mb1-Cre) and establish a cell intrinsic role of BAP1 in the regulation of B cell development. We demonstrate a depletion of large pre-B cells, transitional B cells, and mature B cells in Bap1fl/fl mb1-Cre mice. We characterize broad transcriptional changes in BAP1-deficient pre-B cells, map BAP1 binding across the genome, and analyze the effects of BAP1-loss on histone H2AK119ub levels and distribution. Overall, our work establishes a cell intrinsic role of BAP1 in B lymphocyte development, and suggests its contribution to the regulation of the transcriptional programs of cell cycle progression, via the deubiquitination of histone H2AK119ub.


Assuntos
Linfócitos B/enzimologia , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/metabolismo , Animais , Linfócitos B/imunologia , Linhagem da Célula , Proliferação de Células , Células Cultivadas , Epigênese Genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Ativação Linfocitária , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Células Precursoras de Linfócitos B/enzimologia , Células Precursoras de Linfócitos B/imunologia , Transcrição Gênica , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética , Ubiquitinação
13.
J Exp Med ; 218(3)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33237304

RESUMO

Expression of the signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) is critical for the germinal center (GC) reaction and T cell-dependent antibody production. However, when SAP is expressed normally, the role of the associated SLAM family receptors (SFRs) in these processes is nebulous. Herein, we established that in the presence of SAP, SFRs suppressed the expansion of the GC reaction but facilitated the generation of antigen-specific B cells and antibodies. SFRs favored the generation of antigen-reactive B cells and antibodies by boosting expression of pro-survival effectors, such as the B cell antigen receptor (BCR) and Bcl-2, in activated GC B cells. The effects of SFRs on the GC reaction and T cell-dependent antibody production necessitated expression of multiple SFRs, both in T cells and in B cells. Hence, while in the presence of SAP, SFRs inhibit the GC reaction, they are critical for the induction of T cell-mediated humoral immunity by enhancing expression of pro-survival effectors in GC B cells.


Assuntos
Linfócitos B/citologia , Linfócitos B/imunologia , Centro Germinativo/citologia , Imunidade Humoral , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Animais , Anticorpos/metabolismo , Formação de Anticorpos/imunologia , Antígenos de Helmintos/metabolismo , Apoptose , Medula Óssea/metabolismo , Contagem de Células , Ciclo Celular , Proliferação de Células , Sobrevivência Celular , Relação Dose-Resposta Imunológica , Imunização , Switching de Imunoglobulina , Memória Imunológica , Camundongos Knockout , Nematospiroides dubius/fisiologia , Plasmócitos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Família de Moléculas de Sinalização da Ativação Linfocitária/deficiência , Hipermutação Somática de Imunoglobulina , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Vacinação
14.
Trends Immunol ; 41(7): 586-600, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32434680

RESUMO

Activation-Induced cytidine Deaminase (AID) initiates affinity maturation and isotype switching by deaminating deoxycytidines within immunoglobulin genes, leading to somatic hypermutation (SHM) and class switch recombination (CSR). AID thus potentiates the humoral response to clear pathogens. Marking the 20th anniversary of the discovery of AID, we review the current understanding of AID function. We discuss AID biochemistry and how error-free forms of DNA repair are co-opted to prioritize mutagenesis over accuracy during antibody diversification. We discuss the regulation of DNA double-strand break (DSB) repair pathways during CSR. We describe genomic targeting of AID as a multilayered process involving chromatin architecture, cis- and trans-acting factors, and determining mutagenesis - distinct from AID occupancy at loci that are spared from mutation.


Assuntos
Diversidade de Anticorpos , Citidina Desaminase , Diversidade de Anticorpos/genética , Citidina Desaminase/metabolismo , Genes de Imunoglobulinas , Humanos , Switching de Imunoglobulina/genética , Mutação
15.
NAR Cancer ; 2(3): zcaa019, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33554121

RESUMO

In B lymphocytes, the uracil N-glycosylase (UNG) excises genomic uracils made by activation-induced deaminase (AID), thus underpinning antibody gene diversification and oncogenic chromosomal translocations, but also initiating faithful DNA repair. Ung-/- mice develop B-cell lymphoma (BCL). However, since UNG has anti- and pro-oncogenic activities, its tumor suppressor relevance is unclear. Moreover, how the constant DNA damage and repair caused by the AID and UNG interplay affects B-cell fitness and thereby the dynamics of cell populations in vivo is unknown. Here, we show that UNG specifically protects the fitness of germinal center B cells, which express AID, and not of any other B-cell subset, coincident with AID-induced telomere damage activating p53-dependent checkpoints. Consistent with AID expression being detrimental in UNG-deficient B cells, Ung-/- mice develop BCL originating from activated B cells but lose AID expression in the established tumor. Accordingly, we find that UNG is rarely lost in human BCL. The fitness preservation activity of UNG contingent to AID expression was confirmed in a B-cell leukemia model. Hence, UNG, typically considered a tumor suppressor, acquires tumor-enabling activity in cancer cell populations that express AID by protecting cell fitness.

16.
Blood ; 133(19): 2056-2068, 2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-30814061

RESUMO

Activation-induced cytidine deaminase (AID) initiates somatic hypermutation and class switch recombination of the immunoglobulin genes. As a trade-off for its physiological function, AID also contributes to tumor development through its mutagenic activity. In chronic lymphocytic leukemia (CLL), AID is overexpressed in the proliferative fractions (PFs) of the malignant B lymphocytes, and its anomalous expression has been associated with a clinical poor outcome. Recent preclinical data suggested that ibrutinib and idelalisib, 2 clinically approved kinase inhibitors, increase AID expression and genomic instability in normal and neoplastic B cells. These results raise concerns about a potential mutagenic risk in patients receiving long-term therapy. To corroborate these findings in the clinical setting, we analyzed AID expression and PFs in a CLL cohort before and during ibrutinib treatment. We found that ibrutinib decreases the CLL PFs and, interestingly, also reduces AID expression, which correlates with dampened AKT and Janus Kinase 1 signaling. Moreover, although ibrutinib increases AID expression in a CLL cell line, it is unable to do so in primary CLL samples. Our results uncover a differential response to ibrutinib between cell lines and the CLL clone and imply that ibrutinib could differ from idelalisib in their potential to induce AID in treated patients. Possible reasons for the discrepancy between preclinical and clinical findings, and their effect on treatment safety, are discussed.


Assuntos
Antineoplásicos Imunológicos/efeitos adversos , Citidina Desaminase/efeitos dos fármacos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Pirazóis/efeitos adversos , Pirimidinas/efeitos adversos , Adenina/análogos & derivados , Idoso , Proliferação de Células/efeitos dos fármacos , Citidina Desaminase/biossíntese , Regulação para Baixo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Piperidinas
17.
Nat Commun ; 10(1): 22, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30604754

RESUMO

Mechanisms regulating B cell development, activation, education in the germinal center (GC) and differentiation, underpin the humoral immune response. Protein arginine methyltransferase 5 (Prmt5), which catalyzes most symmetric dimethyl arginine protein modifications, is overexpressed in B cell lymphomas but its function in normal B cells is poorly defined. Here we show that Prmt5 is necessary for antibody responses and has essential but distinct functions in all proliferative B cell stages in mice. Prmt5 is necessary for B cell development by preventing p53-dependent and p53-independent blocks in Pro-B and Pre-B cells, respectively. By contrast, Prmt5 protects, via p53-independent pathways, mature B cells from apoptosis during activation, promotes GC expansion, and counters plasma cell differentiation. Phenotypic and RNA-seq data indicate that Prmt5 regulates GC light zone B cell fate by regulating transcriptional programs, achieved in part by ensuring RNA splicing fidelity. Our results establish Prmt5 as an essential regulator of B cell biology.


Assuntos
Linfócitos B/fisiologia , Proliferação de Células/fisiologia , Centro Germinativo/fisiologia , Imunidade Humoral/fisiologia , Proteína-Arginina N-Metiltransferases/fisiologia , Animais , Apoptose/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Diferenciação Celular/imunologia , Células Cultivadas , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Centro Germinativo/citologia , Humanos , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Cultura Primária de Células , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Transdução de Sinais/fisiologia , Trichostrongyloidea/imunologia , Tricostrongiloidíase/imunologia , Tricostrongiloidíase/parasitologia , Proteína Supressora de Tumor p53/metabolismo
18.
Nat Commun ; 9(1): 1248, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29593215

RESUMO

Activation-induced deaminase (AID) mutates the immunoglobulin (Ig) genes to initiate somatic hypermutation (SHM) and class switch recombination (CSR) in B cells, thus underpinning antibody responses. AID mutates a few hundred other loci, but most AID-occupied genes are spared. The mechanisms underlying productive deamination versus non-productive AID targeting are unclear. Here we show that three clustered arginine residues define a functional AID domain required for SHM, CSR, and off-target activity in B cells without affecting AID deaminase activity or Escherichia coli mutagenesis. Both wt AID and mutants with single amino acid replacements in this domain broadly associate with Spt5 and chromatin and occupy the promoter of AID target genes. However, mutant AID fails to occupy the corresponding gene bodies and loses association with transcription elongation factors. Thus AID mutagenic activity is determined not by locus occupancy but by a licensing mechanism, which couples AID to transcription elongation.


Assuntos
Linfócitos B/metabolismo , Citidina Desaminase/metabolismo , Switching de Imunoglobulina , Mutagênese , Elongação da Transcrição Genética , Animais , Arginina/química , Linhagem Celular Tumoral , Cromatina/química , DNA/química , Desaminação , Escherichia coli/metabolismo , Genes de Imunoglobulinas , Humanos , Imunoglobulinas/química , Lipopolissacarídeos/química , Camundongos , Microscopia Confocal , Mutação , Domínios Proteicos , Hipermutação Somática de Imunoglobulina , Transcrição Gênica
19.
Sci Rep ; 7(1): 7594, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28790320

RESUMO

Activation-induced cytidine deaminase (AID) triggers antibody diversification in B cells by catalysing deamination and subsequently mutating immunoglobulin (Ig) genes. Association of AID with RNA Pol II and occurrence of epigenetic changes during Ig gene diversification suggest participation of AID in epigenetic regulation. AID is mutated in hyper-IgM type 2 (HIGM2) syndrome. Here, we investigated the potential role of AID in the acquisition of epigenetic changes. We discovered that AID binding to the IgH locus promotes an increase in H4K20me3. In 293F cells, we demonstrate interaction between co-transfected AID and the three SUV4-20 histone H4K20 methyltransferases, and that SUV4-20H1.2, bound to the IgH switch (S) mu site, is replaced by SUV4-20H2 upon AID binding. Analysis of HIGM2 mutants shows that the AID truncated form W68X is impaired to interact with SUV4-20H1.2 and SUV4-20H2 and is unable to bind and target H4K20me3 to the Smu site. We finally show in mouse primary B cells undergoing class-switch recombination (CSR) that AID deficiency associates with decreased H4K20me3 levels at the Smu site. Our results provide a novel link between SUV4-20 enzymes and CSR and offer a new aspect of the interplay between AID and histone modifications in setting the epigenetic status of CSR sites.


Assuntos
Citidina Desaminase/genética , Epigênese Genética/imunologia , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Síndrome de Imunodeficiência com Hiper-IgM/genética , Switching de Imunoglobulina/genética , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos B/patologia , Sítios de Ligação , Linhagem Celular Tumoral , Citidina Desaminase/imunologia , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Histona-Lisina N-Metiltransferase/imunologia , Histonas/imunologia , Humanos , Síndrome de Imunodeficiência com Hiper-IgM/imunologia , Síndrome de Imunodeficiência com Hiper-IgM/patologia , Imunoglobulina G/genética , Lipopolissacarídeos/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Mutação , Ligação Proteica , RNA Polimerase II/genética , RNA Polimerase II/imunologia , Transdução de Sinais
20.
Nucleic Acids Res ; 44(22): 10879-10897, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27924011

RESUMO

APRIN (PDS5 cohesin associated factor B) interacts with both the cohesin complex and the BRCA2 tumor suppressor. How APRIN influences cohesion and DNA repair processes is not well understood. Here, we show that APRIN is recruited to DNA damage sites. We find that APRIN interacts directly with RAD51, PALB2 and BRCA2. APRIN stimulates RAD51-mediated DNA strand invasion. APRIN also binds DNA with an affinity for D-loop structures and single-strand (ss) DNA. APRIN is a new homologous recombination (HR) mediator as it counteracts the RPA inhibitory effect on RAD51 loading to ssDNA. We show that APRIN strongly improves the annealing of complementary-strand DNA and that it can stimulate this process in synergy with BRCA2. Unlike cohesin constituents, its depletion has no impact on class switch recombination, supporting a specific role for this protein in HR. Furthermore, we show that low APRIN expression levels correlate with a better survival in ovarian cancer patients and that APRIN depletion sensitizes cells to the PARP inhibitor Olaparib in xenografted zebrafish. Our findings establish APRIN as an important and specific actor of HR, with cohesin-independent functions.


Assuntos
Biomarcadores Tumorais/fisiologia , Proteínas de Ligação a DNA/fisiologia , Neoplasias Ovarianas/metabolismo , Lesões Intraepiteliais Escamosas Cervicais/metabolismo , Fatores de Transcrição/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antineoplásicos/farmacologia , Proteína BRCA2/metabolismo , Benzimidazóis/farmacologia , Biomarcadores Tumorais/química , Linhagem Celular Tumoral , Dano ao DNA , Proteínas de Ligação a DNA/química , Resistencia a Medicamentos Antineoplásicos , Proteína do Grupo de Complementação N da Anemia de Fanconi , Feminino , Humanos , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Proteínas Nucleares/metabolismo , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/mortalidade , Ftalazinas/farmacologia , Piperazinas/farmacologia , Ligação Proteica , Transporte Proteico , Curva ROC , Rad51 Recombinase/metabolismo , Reparo de DNA por Recombinação , Lesões Intraepiteliais Escamosas Cervicais/diagnóstico , Lesões Intraepiteliais Escamosas Cervicais/tratamento farmacológico , Lesões Intraepiteliais Escamosas Cervicais/mortalidade , Fatores de Transcrição/química , Proteínas Supressoras de Tumor/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...