Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Oncoimmunology ; 12(1): 2221081, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304055

RESUMO

Natural Killer (NK) cells are important components of the immune system in the defense against tumor growth and metastasis. They release exosomes containing proteins and nucleic acids, including microRNAs (miRNAs). NK-derived exosomes play a role in the anti-tumor NK cell function since they are able to recognize and kill cancer cells. However, the involvement of exosomal miRNAs in the function of NK exosomes is poorly understood. In this study, we explored the miRNA content of NK exosomes by microarray as compared to their cellular counterparts. The expression of selected miRNAs and lytic potential of NK exosomes against childhood B acute lymphoblastic leukemia cells after co-cultures with pancreatic cancer cells were also evaluated. We identified a small subset of miRNAs, including miR-16-5p, miR-342-3p, miR-24-3p, miR-92a-3p and let-7b-5p that is highly expressed in NK exosomes. Moreover, we provide evidence that NK exosomes efficiently increase let-7b-5p expression in pancreatic cancer cells and induce inhibition of cell proliferation by targeting the cell cycle regulator CDK6. Let-7b-5p transfer by NK exosomes could represent a novel mechanism by which NK cells counteract tumor growth. However, both cytolytic activity and miRNA content of NK exosomes were reduced upon co-culture with pancreatic cancer cells. Alteration in the miRNA cargo of NK exosomes, together with their reduced cytotoxic activity, could represent another strategy exerted by cancer to evade the immune response. Our study provides new information on the molecular mechanisms used by NK exosomes to exert anti-tumor-activity and offers new clues to integrate cancer treatments with NK exosomes.


Assuntos
Exossomos , MicroRNAs , Neoplasias Pancreáticas , Humanos , Criança , Exossomos/genética , MicroRNAs/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Células Matadoras Naturais , Neoplasias Pancreáticas
2.
Cancer Immunol Immunother ; 72(6): 1417-1428, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36451048

RESUMO

Natural killer (NK) cells are cytotoxic lymphoid cells that play a key role in defenses against tumors. However, their function may be severely impaired in patients with pancreatic adenocarcinoma (PA). Indeed, PA cells release soluble factors, thereby generating an immunosuppressive environment that dysregulates NK-cell cytolytic function and favors tumor immune evasion. Here, we analyzed the interactions between NK and PA cells using the PANC-1 and CAPAN-1 cell lines derived from a ductal PA and metastatic lesion, respectively. Metastatic and nonmetastatic cell lines were both able to impair NK cytolytic activity. An analysis of the effect of NK cells and NK-cell-derived exosomes revealed substantial differences between the two cell lines. Thus, NK cells displayed higher cytotoxicity against nonmetastatic PA cells than metastatic PA cells in both 2D cultures and in a 3D extracellular matrix cell system. In addition, NK-derived exosomes could penetrate only PANC-1 spheroids and induce cell killing. Remarkably, when PANC-1 cells were exposed to NK-derived soluble factors, they displayed substantial changes in the expression of genes involved in epithelial-to-mesenchymal transition (EMT) and acquired resistance to NK-mediated cytolysis. These results, together with their correlation with poor clinical outcomes in PA patients, suggest that the induction of resistance to cytolysis upon exposure to NK-derived soluble factors could reflect the occurrence of EMT in tumor cells. Our data indicate that a deeper investigation of the interaction between NK cells and tumor cells may be crucial for immunotherapy, possibly improving the outcome of PA treatment by targeting critical steps of NK-tumor cell crosstalk.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Adenocarcinoma/patologia , Neoplasias Pancreáticas/patologia , Células Matadoras Naturais , Linhagem Celular , Linhagem Celular Tumoral , Neoplasias Pancreáticas
3.
Br J Haematol ; 195(3): 399-404, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34318932

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is an aggressive, heterogeneous neoplasm where prognostication and therapeutic decision are challenging. The available prognostic tools are not able to identify all patients refractory to treatment. MicroRNAs, small RNAs frequently deregulated in cancer, stably circulate in biofluids, representing interesting candidates for non-invasive biomarkers. Here we validated serum miR-22, an evolutionarily conserved microRNA, as a prognostic/predictive biomarker in DLBCL. Moreover, we found that its expression and release from DLBCL cells are related to therapy response and adversely affect cell proliferation. These results suggest that miR-22 is a promising complementary or even independent non-invasive biomarker for DLBCL management.


Assuntos
Linfoma Difuso de Grandes Células B/sangue , MicroRNAs/sangue , RNA Neoplásico/sangue , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/sangue , Divisão Celular/genética , Ciclofosfamida/administração & dosagem , Doxorrubicina/administração & dosagem , Exossomos/química , Genes bcl-2 , Genes myc , Humanos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/mortalidade , Anotação de Sequência Molecular , Prednisona/administração & dosagem , Prognóstico , Estudos Prospectivos , Proteínas Proto-Oncogênicas c-bcl-6/genética , Rituximab/administração & dosagem , Vincristina/administração & dosagem
4.
Cell Death Dis ; 12(7): 636, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34155195

RESUMO

Extracellular vesicles (EVs) and their cargo represent an intriguing source of cancer biomarkers for developing robust and sensitive molecular tests by liquid biopsy. Prostate cancer (PCa) is still one of the most frequent and deadly tumor in men and analysis of EVs from biological fluids of PCa patients has proven the feasibility and the unprecedented potential of such an approach. Here, we exploited an antibody-based proteomic technology, i.e. the Reverse-Phase Protein microArrays (RPPA), to measure key antigens and activated signaling in EVs isolated from sera of PCa patients. Notably, we found tumor-specific protein profiles associated with clinical settings as well as candidate markers for EV-based tumor diagnosis. Among others, PD-L1, ERG, Integrin-ß5, Survivin, TGF-ß, phosphorylated-TSC2 as well as partners of the MAP-kinase and mTOR pathways emerged as differentially expressed endpoints in tumor-derived EVs. In addition, the retrospective analysis of EVs from a 15-year follow-up cohort generated a protein signature with prognostic significance. Our results confirm that serum-derived EV cargo may be exploited to improve the current diagnostic procedures while providing potential prognostic and predictive information. The approach proposed here has been already applied to tumor entities other than PCa, thus proving its value in translational medicine and paving the way to innovative, clinically meaningful tools.


Assuntos
Biomarcadores Tumorais/sangue , Vesículas Extracelulares/metabolismo , Proteínas de Neoplasias/sangue , Neoplasias da Próstata/sangue , Proteoma , Proteômica , Adulto , Idoso , Linhagem Celular Tumoral , Vesículas Extracelulares/ultraestrutura , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Neoplasias da Próstata/ultraestrutura , Análise Serial de Proteínas , Reprodutibilidade dos Testes , Estudos Retrospectivos
5.
Front Immunol ; 12: 638841, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679798

RESUMO

Myeloid derived suppressor cells (MDSC) are heterogeneous populations that through the release of soluble factors and/or by cell-to-cell interactions suppress both innate and adaptive immune effector cells. In pathological conditions, characterized by the presence of inflammation, a partial block in the differentiation potential of myeloid precursors causes an accumulation of these immunosuppressive cell subsets both in peripheral blood and in tissues. On the contrary, NK cells represent a major player of innate immunity able to counteract tumor growth. The anti-tumor activity of NK cells is primarily related to their cytolytic potential and to the secretion of soluble factors or cytokines that may act on tumors either directly or indirectly upon the recruitment of other cell types. NK cells have been shown to play a fundamental role in haploidentical hemopoietic stem cell transplantation (HSCT), for the therapy of high-risk leukemias. A deeper analysis of MDSC functional effects demonstrated that these cells are capable, through several mechanisms, to reduce the potent GvL activity exerted by NK cells. It is conceivable that, in this transplantation setting, the MDSC-removal or -inactivation may represent a promising strategy to restore the anti-leukemia effect mediated by NK cells. Thus, a better knowledge of the cellular interactions occurring in the tumor microenvironment could promote the development of novel therapeutic strategies for the treatment of solid and hematological malignances.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células Matadoras Naturais/imunologia , Células Supressoras Mieloides/imunologia , Neoplasias/imunologia , Microambiente Tumoral/imunologia , Humanos , Neoplasias/terapia
6.
Front Immunol ; 12: 803014, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35116033

RESUMO

Tumor microenvironment (TME) includes a wide variety of cell types and soluble factors capable of suppressing immune-responses. While the role of NK cells in TME has been analyzed, limited information is available on the presence and the effect of polymorphonuclear (PMN) myeloid-derived suppressor cells, (MDSC). Among the immunomodulatory cells present in TME, MDSC are potentially efficient in counteracting the anti-tumor activity of several effector cells. We show that PMN-MDSC are present in high numbers in the PB of patients with primary or metastatic lung tumor. Their frequency correlated with the overall survival of patients. In addition, it inversely correlated with low frequencies of NK cells both in the PB and in tumor lesions. Moreover, such NK cells displayed an impaired anti-tumor activity, even those isolated from PB. The compromised function of NK cells was consequent to their interaction with PMN-MDSC. Indeed, we show that the expression of major activating NK receptors, the NK cytolytic activity and the cytokine production were inhibited upon co-culture with PMN-MDSC through both cell-to-cell contact and soluble factors. In this context, we show that exosomes derived from PMN-MDSC are responsible of a significant immunosuppressive effect on NK cell-mediated anti-tumor activity. Our data may provide a novel useful tool to implement the tumor immunoscore. Indeed, the detection of PMN-MDSC in the PB may be of prognostic value, providing clues on the presence and extension of both adult and pediatric tumors and information on the efficacy not only of immune response but also of immunotherapy and, possibly, on the clinical outcome.


Assuntos
Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Contagem de Leucócitos , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Biomarcadores , Comunicação Celular/imunologia , Comunicação Celular/fisiologia , Citotoxicidade Imunológica , Perfilação da Expressão Gênica , Humanos , Imunomodulação , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Metástase Neoplásica , Estadiamento de Neoplasias , Neoplasias/etiologia , Neoplasias/metabolismo , Neoplasias/patologia , Microambiente Tumoral/imunologia
7.
J Allergy Clin Immunol ; 147(1): 349-360, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32417134

RESUMO

BACKGROUND: Programmed cell death protein 1 (PD-1)-immune checkpoint blockade has provided significant clinical efficacy across various types of cancer by unleashing both T and natural killer (NK) cell-mediated antitumor responses. However, resistance to immunotherapy occurs for many patients, rendering the identification of the mechanisms that control PD-1 expression extremely important to increase the response to the therapy. OBJECTIVE: We sought to identify the stimuli and the molecular mechanisms that induce the de novo PD-1 expression on human NK cells in the tumor setting. METHODS: NK cells freshly isolated from peripheral blood of healthy donors were stimulated with different combinations of molecules, and PD-1 expression was studied at the mRNA and protein levels. Moreover, ex vivo analysis of tumor microenvironment and NK cell phenotype was performed. RESULTS: Glucocorticoids are indispensable for PD-1 induction on human NK cells, in cooperation with a combination of cytokines that are abundant at the tumor site. Mechanistically, glucocorticoids together with IL-12, IL-15, and IL-18 not only upregulate PDCD1 transcription, but also activate a previously unrecognized transcriptional program leading to enhanced mRNA translation and resulting in an increased PD-1 amount in NK cells. CONCLUSIONS: These results provide evidence of a novel immune suppressive mechanism of glucocorticoids involving the transcriptional and translational control of an important immune checkpoint.


Assuntos
Regulação Neoplásica da Expressão Gênica/imunologia , Glucocorticoides/imunologia , Interleucina-15/imunologia , Interleucina-18/imunologia , Interleucina-2/imunologia , Células Matadoras Naturais/imunologia , Proteínas de Neoplasias/imunologia , Neoplasias/imunologia , Receptor de Morte Celular Programada 1/imunologia , Microambiente Tumoral/imunologia , Células A549 , Humanos , Células K562
8.
Cancers (Basel) ; 12(3)2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32178479

RESUMO

Despite the pivotal role of natural killer (NK) cells in defenses against tumors, their exploitation in cancer treatment is still limited due to their reduced ability to reaching tumor sites and the inhibitory effects of tumor microenvironment (TME) on their function. In this study, we have characterized the exosomes from IL2- or IL15-cultured human NK cells. Both cytokines induced comparable amounts of exosomes with similar cargo composition. Analysis of molecules contained within or exposed at the exosome surface, allowed the identification of molecules playing important roles in the NK cell function including IFN-γ, Lymphocyte Function-Associated Antigen (LFA-1), DNAX Accessory Molecule-1 (DNAM1) and Programmed Cell Death Protein (PD-1). Importantly, we show that DNAM1 is involved in exosome-mediated cytotoxicity as revealed by experiments using blocking antibodies to DNAM1 or DNAM1 ligands. In addition, antibody-mediated inhibition of exosome cytotoxicity results in a delay in target cell apoptosis. We also provide evidence that NK-exosomes may exert their cytolytic activity after short time interval and even at low concentrations. Regarding their possible use in immunotherapy, NK exosomes, detectable in peripheral blood, can diffuse into tissues and exert their cytolytic effect at tumor sites. This property offers a clue to integrate cancer treatments with NK exosomes.

10.
Biomed Res Int ; 2014: 146170, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25309903

RESUMO

Prostate cancer (PCa) is one of the leading causes of cancer-related death in men. Despite considerable advances in prostate cancer early detection and clinical management, validation of new biomarkers able to predict the natural history of tumor progression is still necessary in order to reduce overtreatment and to guide therapeutic decisions. MicroRNAs are endogenous noncoding RNAs which offer a fast fine-tuning and energy-saving mechanism for posttranscriptional control of protein expression. Growing evidence indicate that these RNAs are able to regulate basic cell functions and their aberrant expression has been significantly correlated with cancer development. Therefore, detection of microRNAs in tumor tissues and body fluids represents a new tool for early diagnosis and patient prognosis prediction. In this review, we summarize current knowledge about microRNA deregulation in prostate cancer mainly focusing on the different clinical aspects of the disease. We also highlight the potential roles of microRNAs in PCa management, while also discussing several current challenges and needed future research.


Assuntos
Bases de Dados Genéticas , MicroRNAs/uso terapêutico , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/terapia , Medição de Risco , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Prognóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia
11.
Pigment Cell Melanoma Res ; 26(6): 900-11, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23866034

RESUMO

Melanoma is resistant to most standard chemotherapeutics. We analysed the combined effect of doxorubicin and enzastaurin on cell death of four melanoma cell lines, namely G361, SK-MEL3, A375 and SAN. Enzastaurin IC50 was calculated by measure of growth inhibition with MTS assay and corresponded to 2 µM; the half maximal cytotoxicity of doxorubicin was obtained at 3 µM dose. Evaluation of combination index showed synergism (CI > 1) or additive effect (CI = 1) with all melanoma cell lines, with enzastaurin doses ≥0.6 µM and doxorubicin doses ≥1 µM. Combination of the two drugs resulted in increase in caspase 3 and 8 activation, in comparison with activation by single agents. Caspase 8 activation was impaired by TNFR-1 blocking. Our results show doxorubicin-stimulated production of TNFα, whereas enzastaurin-stimulated TNFR-1 expression on plasma membrane. The effect on TNFR-1 appeared to be mediated by PKCζ inhibition. Taken together, our findings suggest that enzastaurin increases doxorubicin-induced apoptosis of melanoma by a mechanism involving, at least in part, activation of the TNF-α signal.


Assuntos
Apoptose/efeitos dos fármacos , Doxorrubicina/farmacologia , Indóis/farmacologia , Melanoma/patologia , Linhagem Celular Tumoral , Doxorrubicina/uso terapêutico , Sinergismo Farmacológico , Inativação Gênica/efeitos dos fármacos , Humanos , Indóis/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/enzimologia , Fosforilação/efeitos dos fármacos , Proteína Quinase C/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais/efeitos dos fármacos , Especificidade por Substrato/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
12.
Am J Physiol Heart Circ Physiol ; 302(1): H135-42, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22058159

RESUMO

Although considered promising for use in drug-eluting stents (DES), tacrolimus failed clinically. Tacrolimus inhibits growth factor production but can also act as a growth factor on vascular smooth muscle cells (VSMC). This unexpected proliferative stimulus could reverse the beneficial effects of the drug on restenosis. We hypothesized that tacrolimus' association with statins, which lower cholesterol and impair cell proliferation, could restore tacrolimus' beneficial effect by abrogating the aberrant proliferative stimulus. Additionally, since maintenance of endothelial function represents a challenge for new-generation DES, we investigated the combined effect of tacrolimus and atorvastatin on endothelial cells. Human VSMC and umbilical vein endothelial cells (HUVEC) were incubated with 100 nM tacrolimus and increasing doses of atorvastatin (0-3.0 µM). Atorvastatin plus tacrolimus dose-dependently inhibited VSMC proliferation. The percentage of cells incorporating 5-bromo-2'-deoxyuridine (BrdU) in their DNA was 49 ± 14% under basal conditions, 62 ± 15% (P = 0.01) with tacrolimus, 40 ± 22% with 3 µM atorvastatin, and 30 ± 7% (P < 0.05) with 3 µM atorvastatin plus tacrolimus. Atorvastatin downregulated ß-catenin, Erk1 and Erk2, and cyclin B in tacrolimus-stimulated VSMC. In contrast, atorvastatin plus tacrolimus did not affect proliferation of endothelial cells. The percentage of HUVEC incorporating BrdU in their DNA was 47 ± 8% under basal conditions, 58 ± 6% (P = 0.01) with tacrolimus, 45 ± 4% with 3 µM atorvastatin, and 49 ± 1% with 3 µM atorvastatin plus tacrolimus. Both agents stimulated endoglin production by HUVEC. Taken together, these results suggest that, when combined with tacrolimus, atorvastatin exerts a dose-dependent antiproliferative effect on VSMC. In contrast, atorvastatin acts in concert with tacrolimus in HUVEC to stimulate production of endoglin, a factor that has an important role in endothelial repair. Our study supports the conclusion that prevention of postcoronary in-stent restenosis and late thrombosis may benefit of concomitant association of tacrolimus and high doses of atorvastatin.


Assuntos
Fármacos Cardiovasculares/farmacologia , Proliferação de Células/efeitos dos fármacos , Ácidos Heptanoicos/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Pirróis/farmacologia , Tacrolimo/farmacologia , Idoso , Idoso de 80 Anos ou mais , Antígenos CD/metabolismo , Atorvastatina , Fármacos Cardiovasculares/efeitos adversos , Células Cultivadas , Ciclina B/metabolismo , Replicação do DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Stents Farmacológicos , Endoglina , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fosforilação , Receptores de Superfície Celular/metabolismo , Tacrolimo/efeitos adversos , Fatores de Tempo , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...