Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Hum Genet ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38759652

RESUMO

Sperm production and function require the correct establishment of DNA methylation patterns in the germline. Here, we examined the genome-wide DNA methylation changes during human spermatogenesis and its alterations in disturbed spermatogenesis. We found that spermatogenesis is associated with remodeling of the methylome, comprising a global decline in DNA methylation in primary spermatocytes followed by selective remethylation, resulting in a spermatids/sperm-specific methylome. Hypomethylated regions in spermatids/sperm were enriched in specific transcription factor binding sites for DMRT and SOX family members and spermatid-specific genes. Intriguingly, while SINEs displayed differential methylation throughout spermatogenesis, LINEs appeared to be protected from changes in DNA methylation. In disturbed spermatogenesis, germ cells exhibited considerable DNA methylation changes, which were significantly enriched at transposable elements and genes involved in spermatogenesis. We detected hypomethylation in SVA and L1HS in disturbed spermatogenesis, suggesting an association between the abnormal programming of these regions and failure of germ cells progressing beyond meiosis.

2.
Hum Reprod ; 39(5): 892-901, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38365879

RESUMO

STUDY QUESTION: Are there subgroups among patients with cryptozoospermia pointing to distinct etiologies? SUMMARY ANSWER: We reveal two distinct subgroups of cryptozoospermic (Crypto) patients based on testicular tissue composition, testicular volume, and FSH levels. WHAT IS KNOWN ALREADY: Cryptozoospermic patients present with a sperm concentration below 0.1 million/ml. While the etiology of the severely impaired spermatogenesis remains largely unknown, alterations of the spermatogonial compartment have been reported including a reduction of the reserve stem cells in these patients. STUDY DESIGN, SIZE, DURATION: To assess whether there are distinct subgroups among cryptozoospermic patients, we applied the statistical method of cluster analysis. For this, we retrospectively selected 132 cryptozoospermic patients from a clinical database who underwent a testicular biopsy in the frame of fertility treatment at a university hospital. As controls (Control), we selected 160 patients with obstructive azoospermia and full spermatogenesis. All 292 patients underwent routine evaluation for endocrine, semen, and histological parameters (i.e. the percentage of tubules with elongated spermatids). Moreover, outcome of medically assisted reproduction (MAR) was assessed for cryptozoospermic (n = 73) and Control patients (n = 87), respectively. For in-depth immunohistochemical and histomorphometrical analyses, representative tissue samples from cryptozoospermic (n = 27) and Control patients (n = 12) were selected based on cluster analysis results and histological parameters. PARTICIPANTS/MATERIALS, SETTING, METHODS: This study included two parts: firstly using clinical parameters of the entire cohort of 292 patients, we performed principal component analysis (PCA) followed by hierarchical clustering on principal components (i.e. considering hormonal values, ejaculate parameters, and histological information). Secondly, for histological analyses seminiferous tubules were categorized according to the most advanced germ cell type present in sections stained with Periodic acid Schif. On the selected cohort of 39 patients (12 Control, 27 cryptozoospermic), we performed immunohistochemistry for spermatogonial markers melanoma-associated antigen 4 (MAGEA4) and piwi like RNA-mediated gene silencing 4 (PIWIL4) followed by quantitative analyses. Moreover, the morphologically defined Adark spermatogonia, which are considered to be the reserve stem cells, were quantified. MAIN RESULTS AND THE ROLE OF CHANCE: The PCA and hierarchical clustering revealed three different clusters, one of them containing all Control samples. The main factors driving the sorting of patients to the clusters were the percentage of tubules with elongated spermatids (Cluster 1, all Control patients and two cryptozoospermic patients), the percentage of tubules with spermatocytes (Cluster 2, cryptozoospermic patients), and tubules showing a Sertoli cells only phenotype (Cluster 3, cryptozoospermic patients). Importantly, the percentage of tubules containing elongated spermatids was comparable between Clusters 2 and 3. Additional differences were higher FSH levels (P < 0.001) and lower testicular volumes (P < 0.001) in Cluster 3 compared to Cluster 2. In the spermatogonial compartment of both cryptozoospermic Clusters, we found lower numbers of MAGEA4+ and Adark spermatogonia but higher proportions of PIWIL4+ spermatogonia, which were significantly correlated with a lower percentage of tubules containing elongated spermatids. In line with this common alteration, the outcome of MAR was comparable between Controls as well as both cryptozoospermic Clusters. LIMITATIONS, REASONS FOR CAUTION: While we have uncovered the existence of subgroups within the cohort of cryptozoospermic patients, comprehensive genetic analyses remain to be performed to unravel potentially distinct etiologies. WIDER IMPLICATIONS OF THE FINDINGS: The novel insight that cryptozoospermic patients can be divided into two subgroups will facilitate the strategic search for underlying genetic etiologies. Moreover, the shared alterations of the spermatogonial stem cell compartment between the two cryptozoospermic subgroups could represent a general response mechanism to the reduced output of sperm, which may be associated with a progressive phenotype. This study therefore offers novel approaches towards the understanding of the etiology underlying the reduced sperm formation in cryptozoospermic patients. STUDY FUNDING/COMPETING INTEREST(S): German research foundation CRU 326 (grants to: SDP, NN). Moreover, we thank the Faculty of Medicine of the University of Münster for the financial support of Lena Charlotte Schülke through the MedK-program. We acknowledge support from the Open Access Publication Fund of the University of Münster. The authors have no potential conflicts of interest. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Hormônio Foliculoestimulante , Espermatogênese , Testículo , Humanos , Masculino , Adulto , Estudos Retrospectivos , Testículo/patologia , Hormônio Foliculoestimulante/sangue , Azoospermia/patologia , Contagem de Espermatozoides , Espermatozoides/patologia , Análise por Conglomerados , Oligospermia/patologia , Infertilidade Masculina/patologia , Infertilidade Masculina/etiologia
3.
Andrology ; 12(3): 570-584, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37594251

RESUMO

BACKGROUND: Infertility affects around 15% of all couples worldwide and is increasingly linked to variants in genes specifically expressed in the testis. Well-established causes of male infertility include pathogenic variants in the genes TEX11, TEX14, and TEX15, while few studies have recently reported variants in TEX13B, TEX13C, FAM9A (TEX39A), and FAM9B (TEX39B). OBJECTIVES: We aimed at screening for novel potential candidate genes among the human TEX ("testis expressed") genes as well as verifying previously described disease associations in this set of genes. MATERIALS AND METHODS: To this end, we screened the exome sequencing data of 1305 men, including 1056 crypto- and azoospermic individuals, and determined cell-specific expression by analyzing testis-specific single-cell RNA sequencing data for genes with identified variants. To investigate the overarching role in male fertility, we generated testis-specific knockdown (KD) models of all 10 orthologous TEX genes in Drosophila melanogaster. RESULTS: We detected rare potential disease-causing variants in TEX10, TEX13A, TEX13B, TEX13C, TEX13D, ZFAND3 (TEX27), TEX33, FAM9A (TEX39A), and FAM9B (TEX39B), in 28 infertile men, of which 15 men carried variants in TEX10, TEX27, and TEX33. The KD of TEX2, TEX9, TEX10, TEX13, ZFAND3 (TEX27), TEX28, TEX30, NFX1 (TEX42), TEX261, and UTP4 (TEX292) in Drosophila resulted in normal fertility. DISCUSSION: Based on our findings, the autosomal dominant predicted genes TEX10 and ZFAND3 (TEX27) and the autosomal recessive predicted gene TEX33, which all three are conceivably required for germ cell maturation, were identified as novel potential candidate genes for human non-obstructive azoospermia. We additionally identified hemizygous loss-of-function (LoF) variants in TEX13B, TEX13C, and FAM9A (TEX39A) as unlikely monogenic culprits of male infertility as LoF variants were also found in control men. CONCLUSION: Our findings concerning the X-linked genes TEX13B, TEX13C, and FAM9A (TEX39A) contradict previous reports and will decrease false-positive reports in genetic diagnostics of azoospermic men.


Assuntos
Azoospermia , Infertilidade Masculina , Animais , Humanos , Masculino , Azoospermia/genética , Drosophila melanogaster , Proteínas de Ciclo Celular/genética , Infertilidade Masculina/metabolismo , Testículo/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Nucleares/genética
4.
Cancers (Basel) ; 15(12)2023 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-37370841

RESUMO

BACKGROUND: Clinical evidence has shown frequent hypogonadism following mitotane (MTT) treatment in male patients with adrenocortical carcinoma. This study aimed to evaluate the impact of MTT on male gonadal function. METHODS: Morphological analysis of testes and testosterone assays were performed on adult CD1 MTT-treated and untreated mice. The expression of key genes involved in interstitial and tubular compartments was studied by real-time PCR. Moreover, quantitative and qualitative analysis of spermatozoa was performed. RESULTS: Several degrees of damage to the testes and a significant testosterone reduction in MTT-treated mice were observed. A significant decline in 3ßHsd1 and Insl3 mRNA expression in the interstitial compartment confirmed an impairment of androgen production. Fsh-R mRNA expression was unaffected by MTT, proving that Sertoli cells are not the drug's primary target. Sperm concentrations were significantly lower in MTT-treated animals. Moreover, the drug caused a significant increase in the percentage of spermatozoa with abnormal chromatin structures. CONCLUSION: MTT negatively affects the male reproductive system, including changes in the morphology of testicular tissue and reductions in sperm concentration and quality.

5.
Development ; 150(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37222410

RESUMO

The spermatogonial compartment maintains spermatogenesis throughout the reproductive lifespan. Single-cell RNA sequencing (scRNA-seq) has revealed the presence of several spermatogonial clusters characterized by specific molecular signatures. However, it is unknown whether the presence of such clusters can be confirmed in terms of protein expression and whether protein expression in the subsets overlaps. To investigate this, we analyzed the expression profile of spermatogonial markers during the seminiferous epithelial cycle in cynomolgus monkeys and compared the results with human data. We found that in cynomolgus monkeys, as in humans, undifferentiated spermatogonia are largely quiescent, and the few engaged in the cell cycle were immunoreactive to GFRA1 antibodies. Moreover, we showed that PIWIL4+ spermatogonia, considered the most primitive undifferentiated spermatogonia in scRNA-seq studies, are quiescent in primates. We also described a novel subset of early differentiating spermatogonia, detectable from stage III to stage VII of the seminiferous epithelial cycle, that were transitioning from undifferentiated to differentiating spermatogonia, suggesting that the first generation of differentiating spermatogonia arises early during the epithelial cycle. Our study makes key advances in the current understanding of male germline premeiotic expansion in primates.


Assuntos
Espermatogênese , Espermatogônias , Adulto , Humanos , Animais , Masculino , Macaca fascicularis , Primatas , Ciclo Celular
6.
FASEB J ; 37(5): e22912, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37086090

RESUMO

The family of WWC proteins is known to regulate cell proliferation and organ growth control via the Hippo signaling pathway. As WWC proteins share a similar domain structure and a common set of interacting proteins, they are supposed to fulfill compensatory functions in cells and tissues. While all three WWC family members WWC1, WWC2, and WWC3 are found co-expressed in most human organs including lung, brain, kidney, and liver, in the testis only WWC2 displays a relatively high expression. In this study, we investigated the testicular WWC2 expression in spermatogenesis and male fertility. We show that the Wwc2 mRNA expression level in mouse testes is increased during development in parallel with germ cell proliferation and differentiation. The cellular expression of each individual WWC family member was evaluated in published single-cell mRNA datasets of murine and human testes demonstrating a high WWC2 expression predominantly in early spermatocytes. In line with this, immunohistochemistry revealed cytosolic WWC2 protein expression in primary spermatocytes from human testes displaying full spermatogenesis. In accordance with these findings, markedly lower WWC2 expression levels were detected in testicular tissues from mice and men lacking germ cells. Finally, analysis of whole-exome sequencing data of male patients affected by infertility and unexplained severe spermatogenic failure revealed several heterozygous, rare WWC2 gene variants with a proposed damaging function and putative impact on WWC2 protein structure. Taken together, our findings provide novel insights into the testicular expression of WWC2 and show its cell-specific expression in spermatocytes. As rare WWC2 variants were identified in the background of disturbed spermatogenesis, WWC2 may be a novel candidate gene for male infertility.


Assuntos
Infertilidade Masculina , Espermatogênese , Testículo , Animais , Humanos , Masculino , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fertilidade/genética , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espermatogênese/genética , Testículo/metabolismo
7.
Commun Biol ; 6(1): 350, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-36997603

RESUMO

Non-obstructive azoospermia, the absence of sperm in the ejaculate due to disturbed spermatogenesis, represents the most severe form of male infertility. De novo microdeletions of the Y-chromosomal AZFa region are one of few well-established genetic causes for NOA and are routinely analysed in the diagnostic workup of affected men. So far, it is unclear which of the three genes located in the AZFa chromosomal region is indispensible for germ cell maturation. Here we present four different likely pathogenic loss-of-function variants in the AZFa gene DDX3Y identified by analysing exome sequencing data of more than 1,600 infertile men. Three of the patients underwent testicular sperm extraction and revealed the typical AZFa testicular Sertoli cell-only phenotype. One of the variants was proven to be de novo. Consequently, DDX3Y represents the AZFa key spermatogenic factor and screening for variants in DDX3Y should be included in the diagnostic workflow.


Assuntos
Azoospermia , Infertilidade Masculina , Humanos , Masculino , Azoospermia/diagnóstico , Azoospermia/genética , Azoospermia/patologia , RNA Helicases DEAD-box/genética , Infertilidade Masculina/genética , Antígenos de Histocompatibilidade Menor , Sêmen , Espermatogênese/genética , Cromossomo Y/patologia
8.
Life Sci Alliance ; 6(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36446526

RESUMO

The process of spermatogenesis-when germ cells differentiate into sperm-is tightly regulated, and misregulation in gene expression is likely to be involved in the physiopathology of male infertility. The testis is one of the most transcriptionally rich tissues; nevertheless, the specific gene expression changes occurring during spermatogenesis are not fully understood. To better understand gene expression during spermatogenesis, we generated germ cell-specific whole transcriptome profiles by systematically comparing testicular transcriptomes from tissues in which spermatogenesis is arrested at successive steps of germ cell differentiation. In these comparisons, we found thousands of differentially expressed genes between successive germ cell types of infertility patients. We demonstrate our analyses' potential to identify novel highly germ cell-specific markers (TSPY4 and LUZP4 for spermatogonia; HMGB4 for round spermatids) and identified putatively misregulated genes in male infertility (RWDD2A, CCDC183, CNNM1, SERF1B). Apart from these, we found thousands of genes showing germ cell-specific isoforms (including SOX15, SPATA4, SYCP3, MKI67). Our approach and dataset can help elucidate genetic and transcriptional causes for male infertility.


Assuntos
Infertilidade Masculina , Sêmen , Humanos , Masculino , Células Germinativas , Splicing de RNA , Perfilação da Expressão Gênica , Infertilidade Masculina/genética , Proteínas
9.
Hum Reprod ; 38(1): 1-13, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36409992

RESUMO

The amount of single-cell RNA-sequencing (scRNA-seq) data produced in the field of human male reproduction has steadily increased. Transcriptional profiles of thousands of testicular cells have been generated covering the human neonatal, prepubertal, pubertal and adult period as well as different types of male infertility; the latter include non-obstructive azoospermia, cryptozoospermia, Klinefelter syndrome and azoospermia factor deletions. In this review, we provide an overview of transcriptional changes in different testicular subpopulations during postnatal development and in cases of male infertility. Moreover, we review novel concepts regarding the existence of spermatogonial and somatic cell subtypes as well as their crosstalk and provide corresponding marker genes to facilitate their identification. We discuss the potential clinical implications of scRNA-seq findings, the need for spatial information and the necessity to corroborate findings by exploring other levels of regulation, including at the epigenetic or protein level.


Assuntos
Azoospermia , Infertilidade Masculina , Adulto , Recém-Nascido , Humanos , Masculino , Espermatogênese/genética , Azoospermia/metabolismo , Testículo/metabolismo , Infertilidade Masculina/metabolismo , Fertilidade , Células-Tronco , RNA/metabolismo
10.
Cell Rep Med ; 2(9): 100395, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34622232

RESUMO

Despite the high incidence of male infertility, only 30% of infertile men receive a causative diagnosis. To explore the regulatory mechanisms governing human germ cell function in normal and impaired spermatogenesis (crypto), we performed single-cell RNA sequencing (>30,000 cells). We find major alterations in the crypto spermatogonial compartment with increased numbers of the most undifferentiated spermatogonia (PIWIL4+). We also observe a transcriptional switch within the spermatogonial compartment driven by increased and prolonged expression of the transcription factor EGR4. Intriguingly, the EGR4-regulated chromatin-associated transcriptional repressor UTF1 is downregulated at transcriptional and protein levels. This is associated with changes in spermatogonial chromatin structure and fewer Adark spermatogonia, characterized by tightly compacted chromatin and serving as reserve stem cells. These findings suggest that crypto patients are disadvantaged, as fewer cells safeguard their germline's genetic integrity. These identified spermatogonial regulators will be highly interesting targets to uncover genetic causes of male infertility.


Assuntos
Compartimento Celular , RNA-Seq , Análise de Célula Única , Espermatogênese , Espermatogônias/patologia , Células-Tronco/patologia , Contagem de Células , Diferenciação Celular , Fatores de Transcrição de Resposta de Crescimento Precoce/metabolismo , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Proteínas de Homeodomínio/metabolismo , Humanos , Ligantes , Masculino , Receptores de Superfície Celular/metabolismo , Transcrição Gênica
11.
Clin Epigenetics ; 13(1): 160, 2021 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-34419158

RESUMO

BACKGROUND: Several studies have reported an association between male infertility and aberrant sperm DNA methylation patterns, in particular in imprinted genes. In a recent investigation based on whole methylome and deep bisulfite sequencing, we have not found any evidence for such an association, but have demonstrated that somatic DNA contamination and genetic variation confound methylation studies in sperm of severely oligozoospermic men. To find out whether testicular germ cells (TGCs) of such patients might carry aberrant DNA methylation, we compared the TGC methylomes of four men with cryptozoospermia (CZ) and four men with obstructive azoospermia, who had normal spermatogenesis and served as controls (CTR). RESULTS: There was no difference in DNA methylation at the whole genome level or at imprinted regions between CZ and CTR samples. However, using stringent filters to identify group-specific methylation differences, we detected 271 differentially methylated regions (DMRs), 238 of which were hypermethylated in CZ (binominal test, p < 2.2 × 10-16). The DMRs were enriched for distal regulatory elements (p = 1.0 × 10-6) and associated with 132 genes, 61 of which are differentially expressed at various stages of spermatogenesis. Almost all of the 67 DMRs associated with the 61 genes (94%) are hypermethylated in CZ (63/67, p = 1.107 × 10-14). As judged by single-cell RNA sequencing, 13 DMR-associated genes, which are mainly expressed during meiosis and spermiogenesis, show a significantly different pattern of expression in CZ patients. In four of these genes, the promoter is hypermethylated in CZ men, which correlates with a lower expression level in these patients. In the other nine genes, eight of which downregulated in CZ, germ cell-specific enhancers may be affected. CONCLUSIONS: We found that impaired spermatogenesis is associated with DNA methylation changes in testicular germ cells at functionally relevant regions of the genome. We hypothesize that the described DNA methylation changes may reflect or contribute to premature abortion of spermatogenesis and therefore not appear in the mature, motile sperm.


Assuntos
Azoospermia/genética , Metilação de DNA/genética , Infertilidade Masculina/genética , Espermatogênese/genética , Espermatozoides/crescimento & desenvolvimento , Teratozoospermia/genética , Adulto , Epigênese Genética , Estudo de Associação Genômica Ampla , Voluntários Saudáveis , Humanos , Masculino , Análise de Sequência de DNA
12.
Front Cell Dev Biol ; 9: 658966, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055789

RESUMO

Mutations affecting the germline can result in infertility or the generation of germ cell tumors (GCT), highlighting the need to identify and characterize the genes controlling germ cell development. The RNA-binding protein and E3 ubiquitin ligase TRIM71 is essential for embryogenesis, and its expression has been reported in GCT and adult mouse testes. To investigate the role of TRIM71 in mammalian germ cell embryonic development, we generated a germline-specific conditional Trim71 knockout mouse (cKO) using the early primordial germ cell (PGC) marker Nanos3 as a Cre-recombinase driver. cKO mice are infertile, with male mice displaying a Sertoli cell-only (SCO) phenotype which in humans is defined as a specific subtype of non-obstructive azoospermia characterized by the absence of germ cells in the seminiferous tubules. Infertility in male Trim71 cKO mice originates during embryogenesis, as the SCO phenotype was already apparent in neonatal mice. The in vitro differentiation of mouse embryonic stem cells (ESCs) into PGC-like cells (PGCLCs) revealed reduced numbers of PGCLCs in Trim71-deficient cells. Furthermore, TCam-2 cells, a human GCT-derived seminoma cell line which was used as an in vitro model for PGCs, showed proliferation defects upon TRIM71 knockdown. Additionally, in vitro growth competition assays, as well as proliferation assays with wild type and CRISPR/Cas9-generated TRIM71 mutant NCCIT cells showed that TRIM71 also promotes proliferation in this malignant GCT-derived non-seminoma cell line. Importantly, the PGC-specific markers BLIMP1 and NANOS3 were consistently downregulated in Trim71 KO PGCLCs, TRIM71 knockdown TCam-2 cells and TRIM71 mutant NCCIT cells. These data collectively support a role for TRIM71 in PGC development. Last, via exome sequencing analysis, we identified several TRIM71 variants in a cohort of infertile men, including a loss-of-function variant in a patient with an SCO phenotype. Altogether, our work reveals for the first time an association of TRIM71 deficiency with human male infertility, and uncovers further developmental roles for TRIM71 in the germline during mouse embryogenesis.

13.
Andrology ; 9(3): 956-964, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33314792

RESUMO

BACKGROUND: Glial cell line-derived neurotrophic factor (GDNF) is a soluble molecule crucial for the regulation of the spermatogonial stem cells (SSC) of the testis. The effects of GDNF on target cells have been extensively described, but mechanisms underlying GDNF regulation are currently under investigation. In the nervous system, GDNF expression is regulated by pro-inflammatory cytokines including lipopolysaccharide (LPS), interleukin 1 beta (IL-1ß), and tumor necrosis factor alpha (TNF-α) but the effect of these cytokines on GDNF expression in the testis is unclear. OBJECTIVES: The aim of the present study was to investigate the impact of TNF-α on GDNF expression levels using primary murine Sertoli cells as experimental model. MATERIAL AND METHODS: The expression of TNF-α-regulated genes including Gdnf in different culture conditions was determined by real-time PCR. GDNF protein levels were determined by ELISA. The activation of the NF-κb pathway and HES1 levels were assessed by Western Blot analysis and immunofluorescence. HES1 expression was downregulated by RNAi. RESULTS: In primary Sertoli cells, TNF-α downregulates GDNF levels through a nuclear factor-κB (NF-κB)-dependent mechanism. Mechanistically, TNF-α induces the transcriptional repressor HES1 by a NF-Κb-dependent mechanism, which in turn downregulates GDNF. DISCUSSION: Under physiological conditions, TNF-α is secreted by germ cells suggesting that this cytokine plays a role in the paracrine control of SSC niche by modulating GDNF levels. HES1, a well-known target of the Notch pathway, is implicated in the regulation of GDNF expression. In Sertoli cells, TNF-α and Notch signaling may converge at molecular level, to regulate the expression of HES1 and HES1- target genes, including GDNF. CONCLUSIONS: Because of the importance of GDNF for spermatogonial stem cell self-renewal and proliferation, this data may give important insights on how cytokine signals in the testis modulate the expression of niche-derived factors.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , NF-kappa B/metabolismo , Células de Sertoli/metabolismo , Fatores de Transcrição HES-1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Masculino , Camundongos , Cultura Primária de Células
14.
Hum Reprod ; 35(12): 2663-2676, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33094328

RESUMO

STUDY QUESTION: What are the consequences of ageing on human Leydig cell number and hormonal function? SUMMARY ANSWER: Leydig cell number significantly decreases in parallel with INSL3 expression and Sertoli cell number in aged men, yet the in vitro Leydig cell androgenic potential does not appear to be compromised by advancing age. WHAT IS KNOWN ALREADY: There is extensive evidence that ageing is accompanied by decline in serum testosterone levels, a general involution of testis morphology and reduced spermatogenic function. A few studies have previously addressed single features of the human aged testis phenotype one at a time, but mostly in tissue from patients with prostate cancer. STUDY DESIGN, SIZE, DURATION: This comprehensive study examined testis morphology, Leydig cell and Sertoli cell number, steroidogenic enzyme expression, INSL3 expression and androgen secretion by testicular fragments in vitro. The majority of these endpoints were concomitantly evaluated in the same individuals that all displayed complete spermatogenesis. PARTICIPANTS/MATERIALS, SETTING, METHODS: Testis biopsies were obtained from 15 heart beating organ donors (age range: 19-85 years) and 24 patients (age range: 19-45 years) with complete spermatogenesis. Leydig cells and Sertoli cells were counted following identification by immunohistochemical staining of specific cell markers. Gene expression analysis of INSL3 and steroidogenic enzymes was carried out by qRT-PCR. Secretion of 17-OH-progesterone, dehydroepiandrosterone, androstenedione and testosterone by in vitro cultured testis fragments was measured by LC-MS/MS. All endpoints were analysed in relation to age. MAIN RESULTS AND THE ROLE OF CHANCE: Increasing age was negatively associated with Leydig cell number (R = -0.49; P < 0.01) and concomitantly with the Sertoli cell population size (R= -0.55; P < 0.001). A positive correlation (R = 0.57; P < 0.001) between Sertoli cell and Leydig cell numbers was detected at all ages, indicating that somatic cell attrition is a relevant cellular manifestation of human testis status during ageing. INSL3 mRNA expression (R= -0.52; P < 0.05) changed in parallel with Leydig cell number and age. Importantly, steroidogenic capacity of Leydig cells in cultured testis tissue fragments from young and old donors did not differ. Consistently, age did not influence the mRNA expression of steroidogenic enzymes. The described changes in Leydig cell phenotype with ageing are strengthened by the fact that the different age-related effects were mostly evaluated in tissue from the same men. LIMITATIONS, REASONS FOR CAUTION: In vitro androgen production analysis could not be correlated with in vivo hormone values of the organ donors. In addition, the number of samples was relatively small and there was scarce information about the concomitant presence of potential confounding variables. WIDER IMPLICATIONS OF THE FINDINGS: This study provides a novel insight into the effects of ageing on human Leydig cell status. The correlation between Leydig cell number and Sertoli cell number at any age implies a connection between these two cell types, which may be of particular relevance in understanding male reproductive disorders in the elderly. However aged Leydig cells do not lose their in vitro ability to produce androgens. Our data have implications in the understanding of the physiological role and regulation of intratesticular sex steroid levels during the complex process of ageing in humans. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by grants from Prin 2010 and 2017. The authors have no conflicts of interest. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Células Intersticiais do Testículo , Espectrometria de Massas em Tandem , Adulto , Idoso , Idoso de 80 Anos ou mais , Cromatografia Líquida , Humanos , Insulina , Masculino , Pessoa de Meia-Idade , Proteínas , Células de Sertoli , Espermatogênese , Testículo , Adulto Jovem
15.
Clin Epigenetics ; 12(1): 61, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32375885

RESUMO

BACKGROUND: In the past 15 years, numerous studies have described aberrant DNA methylation of imprinted genes (e.g. MEST and H19) in sperm of oligozoospermic men, but the prevalence and genomic extent of abnormal methylation patterns have remained unknown. RESULTS: Using deep bisulfite sequencing (DBS), we screened swim-up sperm samples from 40 normozoospermic and 93 patients diagnosed as oligoasthenoteratozoospermic, oligoteratozoospermic or oligozoospermic, which are termed OATs throughout the manuscript, for H19 and MEST methylation. Based on this screening, we defined three patient groups: normal controls (NC), abnormally methylated oligozoospermic (AMO; n = 7) and normally methylated oligozoospermic (NMO; n = 86). Whole-genome bisulfite sequencing (WGBS) of five NC and five AMO samples revealed abnormal methylation levels of all 50 imprinting control regions in each AMO sample. To investigate whether this finding reflected epigenetic germline mosaicism or the presence of residual somatic DNA, we made a genome-wide inventory of soma-germ cell-specific DNA methylation. We found that > 2000 germ cell-specific genes are promoter-methylated in blood and that AMO samples had abnormal methylation levels at these genes, consistent with the presence of somatic cell DNA. The comparison between the five NC and six NMO samples revealed 19 differentially methylated regions (DMRs), none of which could be validated in an independent cohort of 40 men. Previous studies reported a higher incidence of epimutations at single CpG sites in the CTCF-binding region 6 of H19 in infertile patients. DBS analysis of this locus, however, revealed an association between DNA methylation levels and genotype (rs2071094), but not fertility phenotype. CONCLUSIONS: Our results suggest that somatic DNA contamination and genetic variation confound methylation studies in sperm of infertile men. While we cannot exclude the existence of rare patients with slightly abnormal sperm methylation at non-recurrent CpG sites, the prevalence of aberrant methylation in swim-up purified sperm of infertile men has likely been overestimated, which is reassuring for patients undergoing assisted reproduction.


Assuntos
Azoospermia/genética , Metilação de DNA , Oligospermia/genética , Proteínas/genética , RNA Longo não Codificante/genética , Teratozoospermia/genética , Adulto , Estudos de Casos e Controles , Epigênese Genética , Variação Genética , Impressão Genômica , Humanos , Masculino , Espermatogênese , Sequenciamento Completo do Genoma
16.
Mol Reprod Dev ; 87(4): 419-429, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32020743

RESUMO

Glial cell line-derived neurotrophic factor (GDNF) and retinoic acid (RA) are two molecules crucial for the regulation of the spermatogonial compartment of the testis. During the cycle of the seminiferous epithelium, their relative concentration oscillates with lower GDNF levels in stages where RA levels are high. It has been recently shown that RA negatively regulates Gdnf expression but the mechanisms behind are so far unknown. Here, we show that RA directly downregulates Gdnf mRNA levels in primary murine Sertoli cells through binding of RARα to a novel DR5-RARE on Gdnf promoter. Pharmacological inhibition and chromatin immunoprecipitation-quantitative polymerase chain reaction analysis suggested that the underlying mechanism involved histone deacetylase activity and epigenetic repression of Gdnf promoter upon RA treatment.


Assuntos
Regulação para Baixo/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Células de Sertoli/metabolismo , Tretinoína/metabolismo , Tretinoína/farmacologia , Animais , Benzoatos/farmacologia , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Epigênese Genética/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Masculino , Camundongos , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor alfa de Ácido Retinoico/genética , Receptor alfa de Ácido Retinoico/metabolismo , Epitélio Seminífero/metabolismo , Células de Sertoli/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Espermatogônias/metabolismo , Estilbenos/farmacologia , Transfecção
17.
Clin Epigenetics ; 11(1): 127, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31462300

RESUMO

BACKGROUND: The most common sex chromosomal aneuploidy in males is Klinefelter syndrome, which is characterized by at least one supernumerary X chromosome. While these men have long been considered infertile, focal spermatogenesis can be observed in some patients, and sperm can be surgically retrieved and used for artificial reproductive techniques. Although these gametes can be used for fertility treatments, little is known about the molecular biology of the germline in Klinefelter men. Specifically, it is unclear if germ cells in Klinefelter syndrome correctly establish the androgenetic DNA methylation profile and transcriptome. This is due to the low number of germ cells in the Klinefelter testes available for analysis. RESULTS: Here, we overcame these difficulties and successfully investigated the epigenetic and transcriptional profiles of germ cells in Klinefelter patients employing deep bisulfite sequencing and single-cell RNA sequencing. On the transcriptional level, the germ cells from Klinefelter men clustered together with the differentiation stages of normal spermatogenesis. Klinefelter germ cells showed a normal DNA methylation profile of selected germ cell-specific markers compared with spermatogonia and sperm from men with normal spermatogenesis. However, germ cells from Klinefelter patients showed variations in the DNA methylation of imprinted regions. CONCLUSIONS: These data indicate that Klinefelter germ cells have a normal transcriptome but might present aberrant imprinting, showing impairment in germ cell development that goes beyond mere germ cell loss.


Assuntos
Metilação de DNA , Impressão Genômica , Células Germinativas/química , Síndrome de Klinefelter/genética , Epigênese Genética , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Análise de Sequência de RNA , Análise de Célula Única
18.
Development ; 144(19): 3430-3439, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28827392

RESUMO

The human spermatogonial compartment is essential for daily production of millions of sperm. Despite this crucial role, the molecular signature, kinetic behavior and regulation of human spermatogonia are poorly understood. Using human testis biopsies with normal spermatogenesis and by studying marker protein expression, we have identified for the first time different subpopulations of spermatogonia. MAGE-A4 marks all spermatogonia, KIT marks all B spermatogonia and UCLH1 all Apale-dark (Ap-d) spermatogonia. We suggest that at the start of the spermatogenic lineage there are Ap-d spermatogonia that are GFRA1High, likely including the spermatogonial stem cells. Next, UTF1 becomes expressed, cells become quiescent and GFRA1 expression decreases. Finally, GFRA1 expression is lost and subsequently cells differentiate into B spermatogonia, losing UTF1 and acquiring KIT expression. Strikingly, most human Ap-d spermatogonia are out of the cell cycle and even differentiating type B spermatogonial proliferation is restricted. A novel scheme for human spermatogonial development is proposed that will facilitate further research in this field, the understanding of cases of infertility and the development of methods to increase sperm output.


Assuntos
Espermatogônias/citologia , Espermatogônias/metabolismo , Adulto , Idoso , Contagem de Células , Diferenciação Celular , Proliferação de Células , Autorrenovação Celular , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Cinética , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Proteínas Nucleares/metabolismo , Transativadores/metabolismo , Adulto Jovem
19.
Dev Cell ; 41(1): 82-93.e4, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28366282

RESUMO

Global transcriptome reprogramming during spermatogenesis ensures timely expression of factors in each phase of male germ cell differentiation. Spermatocytes and spermatids require particularly extensive reprogramming of gene expression to switch from mitosis to meiosis and to support gamete morphogenesis. Here, we uncovered an extensive alternative splicing program during this transmeiotic differentiation. Notably, intron retention was largely the most enriched pattern, with spermatocytes showing generally higher levels of retention compared with spermatids. Retained introns are characterized by weak splice sites and are enriched in genes with strong relevance for gamete function. Meiotic intron-retaining transcripts (IRTs) were exclusively localized in the nucleus. However, differently from other developmentally regulated IRTs, they are stable RNAs, showing longer half-life than properly spliced transcripts. Strikingly, fate-mapping experiments revealed that IRTs are recruited onto polyribosomes days after synthesis. These studies reveal an unexpected function for regulated intron retention in modulation of the timely expression of select transcripts during spermatogenesis.


Assuntos
Diferenciação Celular/genética , Íntrons/genética , Meiose/genética , Espermatozoides/citologia , Espermatozoides/metabolismo , Processamento Alternativo/genética , Animais , Núcleo Celular/genética , Ontologia Genética , Masculino , Camundongos Endogâmicos C57BL , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Espermatogênese/genética , Transcrição Gênica , Transcriptoma/genética
20.
Semin Cell Dev Biol ; 59: 79-88, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26957475

RESUMO

In all mammals, spermatogonia are defined as constituting the mitotic compartment of spermatogenesis including stem, undifferentiated and differentiating cell types, possessing distinct morphological and molecular characteristics. Even though the real nature of the spermatogonial stem cell and its regulation is still debated the general consensus holds that in steady-state spermatogenesis the stem cell compartment needs to balance differentiation versus self-renewal. This review highlights current understanding of spermatogonial biology, the kinetics of amplification and the signals directing spermatogonial differentiation in mammals. The focus will be on relevant similarities and differences between rodents and non human and human primates.


Assuntos
Espermatogônias/citologia , Animais , Diferenciação Celular , Haplorrinos , Humanos , Cinética , Masculino , Camundongos , Modelos Biológicos , Fenótipo , Nicho de Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...