Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Clin Med ; 13(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38673558

RESUMO

Background: It is reasonable to place an Inferior Vena Cava Filter (IVCF) when an acute deep vein thrombosis (DVT) of the lower limbs occurs in a patient with absolute contraindication to therapeutic anticoagulation. An additional potential reason for placing an IVCF is the need to stop therapeutic anticoagulation in a patient with acute DVT who must undergo urgent non-deferrable surgery. However, IVCFs are often used outside of such established indications and many authors argue about their actual utility, especially in terms of survival. In this retrospective study, we looked for clinical correlates of in-hospital mortality among patients who underwent IVCF placement, limiting our analysis to the cases for which a correct indication to IVCF placement existed. Methods: We retrospectively analyzed the electronic database of our University Hospital, searching for consecutive hospitalized patients who had acute DVT and underwent IVCF placement because of an established contraindication to therapeutic anticoagulation and/or because it was necessary to stop anticoagulation due to urgent surgery. The search covered the period between 1 January 2010 and 31 December 2020. Results: The search resulted in the identification of 168 individuals. An established contraindication to therapeutic anticoagulation was present in 116 patients (69.0%), while urgent non-deferrable surgery was the reason for IVCF placement in 52 patients (31.0%). A total of 24 patients (14.3%) died during the same hospital stay in which the IVCF was placed. Mortality rate was significantly higher in patients with a contraindication to anticoagulation than in patients who underwent IVCF placement because of urgent surgery (19.0% vs. 3.8%, OD 5.85 vs. 0.17). In-hospital mortality was also significantly higher among patients with chronic kidney disease and those who needed blood cell transfusion during hospitalization. Conclusions: This study provides novel information on clinical correlates of in-hospital mortality among patients with acute DVT who undergo IVCF. Prospective observational studies are needed to substantiate these findings.

2.
Obes Surg ; 34(5): 1496-1504, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38451369

RESUMO

OBJECTIVE: Endoscopic sleeve gastroplasty (ESG) is a minimally invasive procedure that proved to be safe and effective in obesity treatment. However, not all subjects respond to treatment in the same way, and, with a view to personalized care, it is essential to identify predictors of success or failure. METHODS: A retrospective 2-year followed-up cohort of ESG subjects was analyzed to investigate the presence of any baseline or early indicators of long-term optimal or suboptimal ESG outcomes. RESULTS: A total of 315 subjects (73% women) were included, with 73% of patients exhibiting an Excess weight loss percentage (%EWL) >25% at the 24 months. Neither demographic parameters (age and sex), smoking habits, and menopause in women nor the presence of comorbidities proved potential predictive value. Interestingly, the %EWL at 1 month after ESG was the strongest predictor of 24-month therapeutic success. Subsequently, we estimated an "early threshold for success" for 1 month-%EWL by employing Youden's index method. CONCLUSIONS: ESG is a safe and effective bariatric treatment that can be offered to a wide range of subjects. Early weight loss seems to impact long-term ESG results significantly and may allow proper early post-operative care optimization.


Assuntos
Gastroplastia , Obesidade Mórbida , Humanos , Feminino , Masculino , Gastroplastia/métodos , Obesidade/cirurgia , Obesidade Mórbida/cirurgia , Estudos Retrospectivos , Resultado do Tratamento , Redução de Peso
3.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38279256

RESUMO

Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is an immune-mediated disorder affecting the peripheral nervous system. Despite the established diagnostic criteria, monitoring disease activity and treatment remains challenging. To address this limitation, we investigated serum neurofilament light chain (sNfL) and serum free light chains (sFLCs) as potential biomarkers. A total of 32 CIDP patients undergoing immunoglobulin therapy and 32 healthy controls enrolled in the present study, and agreed to have their blood plasma sNfL and sFLCs analyzed, while CIDP severity was assessed through the modified Rankin Scale (mRS) and the Overall Neuropathy Limitations Scale (ONLS). In line with the immunoglobulin treatment aimed at limiting neuronal damage administered to the majority of patients, sNfL levels did not exhibit significant differences between the two groups. However, CIDP patients showed significantly elevated sFLC and sFLC ratios, while the marker levels did not correlate with the clinical scores. The study confirms the potential of sFLCs as a sensitive biomarker of inflammatory processes in CIDP. Additionally, the present study results regarding neurofilaments strengthen the role of sNfL in monitoring CIDP treatments, confirming the effectiveness of immunoglobulin therapy. Overall, our results demonstrate how combining these markers can lead to better patient characterization for improved treatment.


Assuntos
Polirradiculoneuropatia Desmielinizante Inflamatória Crônica , Humanos , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/diagnóstico , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/tratamento farmacológico , Filamentos Intermediários , Cadeias Leves de Imunoglobulina , Biomarcadores
4.
Int J Mol Sci ; 24(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37511357

RESUMO

Prolonged B cells stimulation due to the Hepatitis C virus (HCV) can result in autoimmunity, stigmatized by rising levels of cryoglobulins (CGs), the rheumatoid factor (RF), and free light chains (FLC) of immunoglobulins (Ig) associated with a range of symptoms, from their absence to severe cryoglobulinemic vasculitis and lymphoma. Here, we aimed to identify an immunological signature for the earliest stages of vasculitis when cryoprecipitate is still not detectable. We firstly analyzed the IgG subclasses, FLC, and RF in 120 HCV-RNA-positive patients divided into four groups according to the type of cryoprecipitate and symptoms: 30 asymptomatic without cryoprecipitate (No Cryo), 30 with vasculitis symptoms but without CGs that we supposed were circulating but still not detectable (Circulating), 30 type II and 30 type III mixed cryoglobulinemia (Cryo II and Cryo III, respectively). Our results revealed that patients with supposed circulating CGs displayed a pattern of serological parameters that closely resembled Cryo II and Cryo III, with a stronger similarity to Cryo II. Accordingly, we analyzed the groups of Circulating and Cryo II for their immunoglobulin heavy chain (IgH) and T-cell receptor (TCR) gene rearrangements, finding a similar mixed distribution of monoclonal, oligoclonal, and polyclonal responses compared to a control group of ten HCV-RNA-negative patients recovered from infection, who displayed a 100% polyclonal response. Our results strengthened the hypothesis that circulating CGs are the origin of symptoms in HCV-RNA-positive patients without cryoprecipitate and demonstrated that an analysis of clonal IGH and TCR rearrangements is the best option for the early diagnosis of extrahepatic complications.


Assuntos
Crioglobulinemia , Crioglobulinas , Hepatite C Crônica , Vasculite , Vasculite/diagnóstico , Vasculite/imunologia , Vasculite/virologia , Humanos , Masculino , Feminino , Crioglobulinemia/diagnóstico , Crioglobulinemia/virologia , Crioglobulinas/análise , Fator Reumatoide/sangue , Imunoglobulinas/sangue , Hepatite C Crônica/sangue , Hepatite C Crônica/complicações
5.
Allergy ; 78(1): 131-140, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35922152

RESUMO

BACKGROUND: Asthma, with several phenotypes and endotypes, is considered particularly suited for precision medicine. The identification of different non-invasive biomarkers may facilitate diagnosis and treatment. Recently, Staphylococcus aureus and its enterotoxins (SE) have been found to have a role in inducing persistent type 2 airway inflammation in severe asthma, but also in such comorbidities as chronic rhinosinusitis with nasal polyposis (CRSwNP). METHODS: The aim of this retrospective study was to evaluate the prevalence of SE-IgE sensitization in a multicentric Italian cohort of severe asthmatic patients and correlate it with demographic and clinical characteristics. RESULTS: A total of 249 patients were included in the analysis, out of which 25.3% were staphylococcal enterotoxin B (SEB)-IgE positive. We found a meaningful association between SEB-IgE and female gender, a positive association was also measured between CRS and CRSwNP. No significant association was found between SEB-IgE sensitization and atopy, the occurrence of exacerbations and corticosteroid dosages. In the SEB-IgE-positive patient, blood eosinophil count does not appear to be correlated with the severity of the disease. Patients with SEB-IgE sensitization are, on average, younger and with an earlier disease onset, thus confirming the possibility to consider SEB-IgE sensitization as an independent risk factor for developing asthma. CONCLUSIONS: Our data confirm that the search for SE in the initial screening phase of these patients is helpful to better phenotype them, may predict the evolution of comorbidities and lead to a targeted therapeutic choice; in this point of view this represents a goal of precision medicine.


Assuntos
Asma , Pólipos Nasais , Feminino , Humanos , Staphylococcus aureus , Estudos Retrospectivos , Imunoglobulina E , Enterotoxinas , Asma/diagnóstico , Asma/epidemiologia , Gravidade do Paciente , Pólipos Nasais/epidemiologia
6.
J Nanobiotechnology ; 20(1): 530, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36514065

RESUMO

BACKGROUND: Extracellular Vesicles (EVs) are sub-micrometer lipid-bound particles released by most cell types. They are considered a promising source of cancer biomarkers for liquid biopsy and personalized medicine due to their specific molecular cargo, which provides biochemical information on the state of parent cells. Despite this potential, EVs translation process in the diagnostic practice is still at its birth, and the development of novel medical devices for their detection and characterization is highly required. RESULTS: In this study, we demonstrate mid-infrared plasmonic nanoantenna arrays designed to detect, in the liquid and dry phase, the specific vibrational absorption signal of EVs simultaneously with the unspecific refractive index sensing signal. For this purpose, EVs are immobilized on the gold nanoantenna surface by immunocapture, allowing us to select specific EV sub-populations and get rid of contaminants. A wet sample-handling technique relying on hydrophobicity contrast enables effortless reflectance measurements with a Fourier-transform infrared (FTIR) spectro-microscope in the wavelength range between 10 and 3 µm. In a proof-of-principle experiment carried out on EVs released from human colorectal adenocarcinoma (CRC) cells, the protein absorption bands (amide-I and amide-II between 5.9 and 6.4 µm) increase sharply within minutes when the EV solution is introduced in the fluidic chamber, indicating sensitivity to the EV proteins. A refractive index sensing curve is simultaneously provided by our sensor in the form of the redshift of a sharp spectral edge at wavelengths around 5 µm, where no vibrational absorption of organic molecules takes place: this permits to extract of the dynamics of EV capture by antibodies from the overall molecular layer deposition dynamics, which is typically measured by commercial surface plasmon resonance sensors. Additionally, the described metasurface is exploited to compare the spectral response of EVs derived from cancer cells with increasing invasiveness and metastatic potential, suggesting that the average secondary structure content in EVs can be correlated with cell malignancy. CONCLUSIONS: Thanks to the high protein sensitivity and the possibility to work with small sample volumes-two key features for ultrasensitive detection of extracellular vesicles- our lab-on-chip can positively impact the development of novel laboratory medicine methods for the molecular characterization of EVs.


Assuntos
Vesículas Extracelulares , Neoplasias , Humanos , Vesículas Extracelulares/metabolismo , Biópsia Líquida , Neoplasias/metabolismo , Técnicas de Cultura de Células , Proteínas/análise , Amidas/análise , Amidas/metabolismo
7.
Front Aging Neurosci ; 14: 932354, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204549

RESUMO

Red blood cells (RBCs) are characterized by a remarkable elasticity, which allows them to undergo very large deformation when passing through small vessels and capillaries. This extreme deformability is altered in various clinical conditions, suggesting that the analysis of red blood cell (RBC) mechanics has potential applications in the search for non-invasive and cost-effective blood biomarkers. Here, we provide a comparative study of the mechanical response of RBCs in patients with Alzheimer's disease (AD) and healthy subjects. For this purpose, RBC viscoelastic response was investigated using atomic force microscopy (AFM) in the force spectroscopy mode. Two types of analyses were performed: (i) a conventional analysis of AFM force-distance (FD) curves, which allowed us to retrieve the apparent Young's modulus, E; and (ii) a more in-depth analysis of time-dependent relaxation curves in the framework of the standard linear solid (SLS) model, which allowed us to estimate cell viscosity and elasticity, independently. Our data demonstrate that, while conventional analysis of AFM FD curves fails in distinguishing the two groups, the mechanical parameters obtained with the SLS model show a very good classification ability. The diagnostic performance of mechanical parameters was assessed using receiving operator characteristic (ROC) curves, showing very large areas under the curves (AUC) for selected biomarkers (AUC > 0.9). Taken all together, the data presented here demonstrate that RBC mechanics are significantly altered in AD, also highlighting the key role played by viscous forces. These RBC abnormalities in AD, which include both a modified elasticity and viscosity, could be considered a potential source of plasmatic biomarkers in the field of liquid biopsy to be used in combination with more established indicators of the pathology.

8.
Cancers (Basel) ; 14(19)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36230585

RESUMO

The development of new tools for the early detection of pancreatic ductal adenocarcinoma (PDAC) represents an area of intense research. Recently, the concept has emerged that multiplexed detection of different signatures from a single biospecimen (e.g., saliva, blood, etc.) may exhibit better diagnostic capability than single biomarkers. In this work, we develop a multiplexed strategy for detecting PDAC by combining characterization of the nanoparticle (NP)-protein corona, i.e., the protein layer that surrounds NPs upon exposure to biological fluids and circulating levels of plasma proteins belonging to the acute phase protein (APPs) family. As a first step, we developed a nanoparticle-enabled blood (NEB) test that employed 600 nm graphene oxide (GO) nanosheets and human plasma (HP) (5% vol/vol) to produce 75 personalized protein coronas (25 from healthy subjects and 50 from PDAC patients). Isolation and characterization of protein corona patterns by 1-dimensional (1D) SDS-PAGE identified significant differences in the abundance of low-molecular-weight corona proteins (20-30 kDa) between healthy subjects and PDAC patients. Coupling the outcomes of the NEB test with the circulating levels of alpha 2 globulins, we detected PDAC with a global capacity of 83.3%. Notably, a version of the multiplexed detection strategy run on sex-disaggregated data provided substantially better classification accuracy for men (93.1% vs. 77.8%). Nanoliquid chromatography tandem mass spectrometry (nano-LC MS/MS) experiments allowed to correlate PDAC with an altered enrichment of Apolipoprotein A-I, Apolipoprotein D, Complement factor D, Alpha-1-antichymotrypsin and Alpha-1-antitrypsin in the personalized protein corona. Moreover, other significant changes in the protein corona of PDAC patients were found. Overall, the developed multiplexed strategy is a valid tool for PDAC detection and paves the way for the identification of new potential PDAC biomarkers.

9.
J Pers Med ; 12(6)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35743734

RESUMO

Extracellular vesicles (EVs) are abundantly released into the systemic circulation, where they show remarkable stability and harbor molecular constituents that provide biochemical information about their cells of origin. Due to this characteristic, EVs are attracting increasing attention as a source of circulating biomarkers for cancer liquid biopsy and personalized medicine. Despite this potential, none of the discovered biomarkers has entered the clinical practice so far, and novel approaches for the label-free characterization of EVs are highly demanded. In this regard, Fourier Transform Infrared Spectroscopy (FTIR) has great potential as it provides a quick, reproducible, and informative biomolecular fingerprint of EVs. In this pilot study, we investigated, for the first time in the literature, the capability of FTIR spectroscopy to distinguish between EVs extracted from sera of cancer patients and controls based on their mid-IR spectral response. For this purpose, EV-enriched suspensions were obtained from the serum of patients diagnosed with Hepatocellular Carcinoma (HCC) of nonviral origin and noncancer subjects. Our data point out the presence of statistically significant differences in the integrated intensities of major mid-IR absorption bands, including the carbohydrate and nucleic acids band, the protein amide I and II bands, and the lipid CH stretching band. Additionally, we used Principal Component Analysis combined with Linear Discriminant Analysis (PCA-LDA) for the automated classification of spectral data according to the shape of specific mid-IR spectral signatures. The diagnostic performances of the proposed spectral biomarkers, alone and combined, were evaluated using multivariate logistic regression followed by a Receiving Operator Curve analysis, obtaining large Areas Under the Curve (AUC = 0.91, 95% CI 0.81-1.0). Very interestingly, our analyses suggest that the discussed spectral biomarkers can outperform the classification ability of two widely used circulating HCC markers measured on the same groups of subjects, namely alpha-fetoprotein (AFP), and protein induced by the absence of vitamin K or antagonist-II (PIVKA-II).

10.
Int J Legal Med ; 136(3): 719-727, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35239030

RESUMO

Estimating the post-mortem interval is a fundamental, albeit challenging task in forensic sciences. To this aim, forensic practitioners need to assess post-mortem changes through a plethora of different methods, most of which are inherently qualitative, thus providing broad time intervals rather than precise determinations. This challenging problem is further complicated by the influence of environmental factors, which modify the temporal dynamics of post-mortem changes, sometimes in a rather unpredictable fashion. In this context, the search for quantitative and objective descriptors of post-mortem changes is highly demanded. In this study, we used computed tomography (CT) to assess the post-mortem anatomical modifications occurring in the time interval 0-4 days after death in the brain of four corpses. Our results show that fractal analysis of CT brain slices provides a set of quantitative descriptors able to map post-mortem changes over time throughout the whole brain. Although incapable of producing a direct estimation of the PMI, these descriptors could be used in combination with other more established methods to improve the accuracy and reliability of PMI determination.


Assuntos
Encéfalo/diagnóstico por imagem , Fractais , Mudanças Depois da Morte , Humanos , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X/métodos
11.
J Pers Med ; 13(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36675666

RESUMO

Hepatocellular carcinoma (HCC) represents a worldwide health matter with a major care burden, high prevalence, and poor prognosis. Its pathogenesis mainly varies depending on the underlying etiological factors, although it develops from liver cirrhosis in the majority of cases. This review summarizes the role of the most interesting soluble factors as biomarkers for early diagnosis and as recommended targets for treatment in accordance with the new challenges in precision medicine. In the premalignant environment, inflammatory cells release a wide range of cytokines, chemokines, growth factors, prostaglandins, and proangiogenic factors, making the liver environment more suitable for hepatocyte tumor progression that starts from acquired genetic mutations. A complex interaction of pro-inflammatory (IL-6, TNF-α) and anti-inflammatory cytokines (TGF-α and -ß), pro-angiogenic molecules (including the Angiopoietins, HGF, PECAM-1, HIF-1α, VEGF), different transcription factors (NF-kB, STAT-3), and their signaling pathways are involved in the development of HCC. Since cytokines are expressed and released during the different stages of HCC progression, their measurement, by different available methods, can provide in-depth information on the identification and management of HCC.

12.
Int J Mol Sci ; 22(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34502051

RESUMO

Myasthenia gravis with antibodies (Abs) against the muscle-specific tyrosine kinase (MuSK) is a rare autoimmune disorder (AD) of the neuromuscular junction (NMJ) and represents a prototype of AD with proven IgG4-mediated pathogenicity. Thanks to the mechanism of Fab-arm exchange (FAE) occurring in vivo, resulting MuSK IgG4 k/λ Abs increase their interference on NMJ and pathogenicity. The characterization of hybrid MuSK IgG4 as a biomarker for MG management is poorly investigated. Here, we evaluated total IgG4, hybrid IgG4 k/λ, and the hybrid/total ratio in 14 MuSK-MG sera in comparison with 24 from MG with Abs against acetylcholine receptor (AChR) that represents the not IgG4-mediated MG form. In both subtypes of MG, we found that the hybrid/total ratio reflects distribution reported in normal individuals; instead, when we correlated the hybrid/total ratio with specific immune-reactivity we found a positive correlation only with anti-MuSK titer, with a progressive increase of hybrid/total mean values with increasing disease severity, indirectly confirming that most part of hybrid IgG4 molecules are engaged in the anti-MuSK pathogenetic immune-reactivity. Further analysis is necessary to strengthen the significance of this less unknown biomarker, but we retain it is full of a diagnostic-prognostic powerful potential for the management of MuSK-MG.


Assuntos
Imunoglobulina G/imunologia , Miastenia Gravis/imunologia , Receptores Proteína Tirosina Quinases/imunologia , Receptores Colinérgicos/imunologia , Biomarcadores/sangue , Humanos , Imunoglobulina G/sangue , Miastenia Gravis/sangue , Junção Neuromuscular/metabolismo , Junção Neuromuscular/patologia
13.
Nanomaterials (Basel) ; 11(6)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199576

RESUMO

Exosomes (EXOs) are nano-sized vesicles secreted by most cell types. They are abundant in bio-fluids and harbor specific molecular constituents from their parental cells. Due to these characteristics, EXOs have a great potential in cancer diagnostics for liquid biopsy and personalized medicine. Despite this unique potential, EXOs are not yet widely applied in clinical settings, with two main factors hindering their translational process in diagnostics. Firstly, conventional extraction methods are time-consuming, require large sample volumes and expensive equipment, and often do not provide high-purity samples. Secondly, characterization methods have some limitations, because they are often qualitative, need extensive labeling or complex sampling procedures that can induce artifacts. In this context, novel label-free approaches are rapidly emerging, and are holding potential to revolutionize EXO diagnostics. These methods include the use of nanodevices for EXO purification, and vibrational spectroscopies, scattering, and nanoindentation for characterization. In this progress report, we summarize recent key advances in label-free techniques for EXO purification and characterization. We point out that these methods contribute to reducing costs and processing times, provide complementary information compared to the conventional characterization techniques, and enhance flexibility, thus favoring the discovery of novel and unexplored EXO-based biomarkers. In this process, the impact of nanotechnology is systematically highlighted, showing how the effectiveness of these techniques can be enhanced using nanomaterials, such as plasmonic nanoparticles and nanostructured surfaces, which enable the exploitation of advanced physical phenomena occurring at the nanoscale level.

14.
J Pers Med ; 11(5)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066701

RESUMO

The ongoing outbreak of coronavirus disease 2019 (COVID-19), which impairs the functionality of several organs, represents a major threat to human health. One of the hardest challenges in the fight against COVID-19 is the development of wide-scale, effective, and rapid laboratory tests to control disease severity, progression, and possible sudden worsening. Monitoring patients in real-time is highly demanded in this pandemic era when physicians need reliable and quantitative tools to prioritize patients' access to intensive care departments. In this regard, salivary biomarkers are extremely promising, as they allow for the fast and non-invasive collection of specimens and can be repeated multiple times. METHODS: We compare salivary levels of immunoglobulin A subclasses (IgA1 and IgA2) and free light chains (kFLC and λFLC) in a cohort of 29 SARS-CoV-2 patients and 21 healthy subjects. RESULTS: We found that each biomarker differs significantly between the two groups, with p-values ranging from 10-8 to 10-4. A Receiving Operator Curve analysis shows that λFLC level is the best-suited candidate to discriminate the two groups (AUC = 0.96), with an accuracy of 0.94 (0.87-1.00 95% CI), a precision of 0.91 (0.81-1.00 95% CI), a sensitivity of 1.00 (0.96-1.00 95% CI), and a specificity of 0.86 (0.70-1.00 95% CI). CONCLUSION: These results suggest λFLC as an ideal indicator of patient conditions. This hypothesis is strengthened by the consideration that the λFLC half-life (approximately 6 h) is significantly shorter than the IgA one (21 days), thus confirming the potential of λFLC for effectively monitoring patients' fluctuation in real-time.

15.
Biomater Sci ; 9(13): 4671-4678, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34018505

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive form of gliomas. The development of supplementary approaches for glioblastoma diagnosis, limited to imaging techniques and tissue biopsies so far, is a necessity of clinical relevance. In this context, nanotechnology might afford tools to enable early diagnosis. Upon exposure to biological media, nanoparticles are coated with a layer of proteins, the protein corona (PC), whose composition is individual and personalized. Here we show that the PC of graphene oxide nanosheets has a capacity to detect GBM using a simple one-dimensional gel electrophoresis technique. In a range of molecular weights between 100 and 120 kDa, the personalized PC from GBM patients is completely discernible from that of healthy donors and that of cancer patients affected by pancreatic adenocarcinoma and colorectal cancer. Using tandem mass spectrometry, we found that inter-alpha-trypsin inhibitor (ITI) heavy chain H4 is enriched in the PC of all tested individuals but not in the GBM patients. Overall, if confirmed on a larger cohort series, this approach could be advantageous at the first level of investigation to decide whether to carry out more invasive analyses and/or to follow up patients after surgery and/or pharmacological treatment.


Assuntos
Adenocarcinoma , Glioblastoma , Neoplasias Pancreáticas , Coroa de Proteína , Eletroforese , Glioblastoma/diagnóstico , Grafite , Humanos
16.
Cancers (Basel) ; 14(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35008171

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a global health problem associated with chronic liver disease. Its pathogenesis varies according to the underlying etiological factors, although in most cases it develops from liver cirrhosis. The disease progression is accompanied by pathological angiogenesis, which is a prerequisite that favors the development of HCC. AIMS: This study aims at contributing to our understanding of the role of angiogenic factors in the progression of liver disease. For this purpose, we evaluate the clinical significance of serum angiogenic markers (VEGF, Ang-1, Ang-2, the angiopoietin receptor Tie1/2, HGF, and PECAM-1) first in cirrhotic and HCC patients separately, and then comparing cirrhotic patients with and without HCC. MATERIALS AND METHODS: We enrolled 62 patients, out of whom 33 were diagnosed with HCC and 29 with liver cirrhosis without signs of neoplasia. Patients underwent venous blood sampling before and after receiving treatments for the diagnosed disease. Serum markers were evaluated using ELISA assays for Tie1 and the Bio-Plex Multiplex system for the remaining ones. Biomarker levels were investigated as a function of clinical scores for disease staging (MELD and Fibrosis Index, FI). RESULTS: In cirrhotic patients, Ang-1 and Ang-2 correlate with MELD (ρAng-1 = -0.73, p = 2E-5) and FI (ρAng-1 = -0.52, p = 7E-3, ρAng-2 = 0.53, p = 3E-3). A reduction of Ang-2 levels (p = 0.047) and of the Ang-2/Ang-1 ratio (p = 0.031) is observed in cirrhotic patients diagnosed with viral hepatitis after antiviral treatments. In HCC patients, Ang-1 negatively correlates with FI (ρ = -0.63, p = 1E-4), and PECAM-1 positively correlates with MELD (ρ = 0.44, p = 0.01). A significant Ang-1 reduction was observed in deceased patients during the study compared to ones who survived (p = 0.01). In HCC patients, VEGF levels were increased after tumor treatment (p = 0.037). Notably, HGF levels in cirrhotic patients with HCC are significantly raised (p = 0.017) compared to that in those without HCC. CONCLUSIONS: Our results suggest that serum angiogenic markers, with emphasis on Ang-1/2, can contribute to the development of quantitative tools for liver disease staging and therapy monitoring. The comparison between cirrhotic patients with and without HCC suggests that HGF levels are potentially useful for monitoring the insurgence of HCC after a cirrhosis diagnosis. High Ang-1 levels in HCC patients appear to have a protective role as well as prognostic significance.

17.
Nanomaterials (Basel) ; 10(8)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751061

RESUMO

Liposomal doxorubicin (L-DOX) is a popular drug formulation for the treatment of several cancer types (e.g., recurrent ovarian cancer, metastatic breast cancer, multiple myeloma, etc.), but poor nuclear internalization has hampered its clinical applicability so far. Therefore, novel drug-delivery nanosystems are actively researched in cancer chemotherapy. Here we demonstrate that DOX-loaded graphene oxide (GO), GO-DOX, exhibits much higher anticancer efficacy as compared to its L-DOX counterpart if administered to cellular models of breast cancer. Then, by a combination of live-cell confocal imaging and fluorescence lifetime imaging microscopy (FLIM), we suggest that GO-DOX may realize its superior performances by inducing massive intracellular DOX release (and its subsequent nuclear accumulation) upon binding to the cell plasma membrane. Reported results lay the foundation for future exploitation of these new adducts as high-performance nanochemotherapeutic agents.

18.
Artigo em Inglês | MEDLINE | ID: mdl-32523944

RESUMO

The protein corona (PC) that forms around nanomaterials upon exposure to human biofluids (e.g., serum, plasma, cerebral spinal fluid etc.) is personalized, i.e., it depends on alterations of the human proteome as those occurring in several cancer types. This may relevant for early cancer detection when changes in concentration of typical biomarkers are often too low to be detected by blood tests. Among nanomaterials under development for in vitro diagnostic (IVD) testing, Graphene Oxide (GO) is regarded as one of the most promising ones due to its intrinsic properties and peculiar behavior in biological environments. While recent studies have explored the binding of single proteins to GO nanoflakes, unexplored variables (e.g., GO lateral size and protein concentration) leading to formation of GO-PC in human plasma (HP) have only marginally addressed so far. In this work, we studied the PC that forms around GO nanoflakes of different lateral sizes (100, 300, and 750 nm) upon exposure to HP at several dilution factors which extend over three orders of magnitude from 1 (i.e., undiluted HP) to 103. HP was collected from 20 subjects, half of them being healthy donors and half of them diagnosed with pancreatic ductal adenocarcinoma (PDAC) a lethal malignancy with poor prognosis and very low 5-year survival rate after diagnosis. By dynamic light scattering (DLS), electrophoretic light scattering (ELS), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and nano liquid chromatography tandem mass spectrometry (nano-LC MS/MS) experiments we show that the lateral size of GO has a minor impact, if any, on PC composition. On the other side, protein concentration strongly affects PC of GO nanoflakes. In particular, we were able to set dilution factor of HP in a way that maximizes the personalization of PC, i.e., the alteration in the protein profile of GO nanoflakes between cancer vs. non-cancer patients. We believe that this study shall contribute to a deeper understanding of the interactions among GO and HP, thus paving the way for the development of IVD tools to be used at every step of the patient pathway, from prognosis, screening, diagnosis to monitoring the progression of disease.

19.
Pharmaceutics ; 12(2)2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32019150

RESUMO

Coating graphene oxide nanoflakes with cationic lipids leads to highly homogeneous nanoparticles (GOCL NPs) with optimised physicochemical properties for gene delivery applications. In view of in vivo applications, here we use dynamic light scattering, micro-electrophoresis and one-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis to explore the bionano interactions between GOCL/DNA complexes (hereafter referred to as "grapholipoplexes") and human plasma. When exposed to increasing protein concentrations, grapholipoplexes get covered by a protein corona that evolves with protein concentration, leading to biocoronated complexes with modified physicochemical properties. Here, we show that the formation of a protein corona dramatically changes the interactions of grapholipoplexes with four cancer cell lines: two breast cancer cell lines (MDA-MB and MCF-7 cells), a malignant glioma cell line (U-87 MG) and an epithelial colorectal adenocarcinoma cell line (CACO-2). Luciferase assay clearly indicates a monotonous reduction of the transfection efficiency of biocoronated grapholipoplexes as a function of protein concentration. Finally, we report evidence that a protein corona formed at high protein concentrations (as those present in in vivo studies) promotes a higher capture of biocoronated grapholipoplexes within degradative intracellular compartments (e.g., lysosomes), with respect to their pristine counterparts. On the other hand, coronas formed at low protein concentrations (human plasma = 2.5%) lead to high transfection efficiency with no appreciable cytotoxicity. We conclude with a critical assessment of relevant perspectives for the development of novel biocoronated gene delivery systems.

20.
Cancers (Basel) ; 13(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396882

RESUMO

Simultaneous detection of multiple analytes from a single biological sample is gaining more attention in the development of more reliable and point-of-care diagnostic devices. We developed a multiplexed strategy that combined outcomes of clinical biomarkers with analysis of the protein corona that forms around graphene oxide sheets upon exposure to patient's plasma. As a paradigmatic case study, we selected pancreatic ductal adenocarcinoma (PDAC), mainly because of the absence of effective detection strategies that resulted in an extremely low five-year survival rate after diagnosis (<10%). Association of protein corona analysis and haemoglobin levels discriminated PDAC patients from healthy volunteers in up to 90% of cases. If further confirmed in larger-cohort studies, this approach may be used in the detection of PDAC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...