Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 36(4): 939-947, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-31913638

RESUMO

Decorating thin-film solar cells with plasmonic nanoparticles is being pursued in order to improve device efficiency through increased scattering and local field enhancement. Gold nanoparticles are particularly interesting due to their chemical inertness and plasmon resonance in the visible range of the spectrum. In this work, gold nanoparticles fabricated by a gas aggregation nanoparticle source and embedded in a-Si (a commercial solar cell material) are studied using X-ray photoelectron spectroscopy, transmission electron microscopy, electron energy-loss spectroscopy, and energy-dispersive X-ray spectroscopy. The formation of gold silicide around the nanoparticles is investigated, as it has important consequences for the optical and electronic properties of the structures. Different from previous studies, in which the silicide formation is observed for gold nanoparticles and thin films grown on top of crystalline silicon or silica, it is found that silicide formation is largely enhanced around the nanoparticles, owing to their increased surface/volume ratio. A detailed gold silicide formation mechanism is presented based on the results, and strategies for optimizing the design of plasmonically enhanced solar cells with gold nanoparticles encapsulated in a-Si are discussed.

2.
Nanomaterials (Basel) ; 9(3)2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30875956

RESUMO

Core-shells metallic nanoparticles have the advantage of possessing two plasmon resonances, one in the visible and one in the infrared part of the spectrum. This special property is used in this work to enhance the efficiency of thin film solar cells by improving the optical absorption at both wavelength ranges simultaneously by using a neural network. Although many thin-film solar cell compositions can benefit from such a design, in this work, different silver core-shell configurations were explored inside a Halide Perovskite (CH3NH3PbI3) thin film. Because the number of potential configurations is infinite, only a limited number of finite difference time domain (FDTD) simulations were performed. A neural network was then trained with the simulation results to find the core-shells configurations with optimal optical absorption across different wavelength ranges. This demonstrates that core-shells nanoparticles can make an important contribution to improving solar cell performance and that neural networks can be used to find optimal results in such nanophotonic systems.

3.
Nanotechnology ; 28(35): 355702, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28653959

RESUMO

We report the simultaneous investigation of both the plasmonic resonance and electrical conductance evolution in stretchable metal-polymer nanocomposite films. The films are produced by the implantation of neutral gold nanoparticles in a polydimethylsiloxane substrate by aerodynamic acceleration in a supersonic expansion. A redshift of the gold nanoparticle plasmon peak is found upon stretching as well as a strong correlation between the plasmonic peak wavelength and the nanocomposite electrical resistance. Optical simulations attribute the optical response to the compression of the polymer perpendicular to the stretching direction, which brings the gold particles closer to each other, increasing the plasmonic coupling. Mechanical stretching can induce a simultaneous modulation of the optical and electrical properties of the nanocomposite.

4.
Prog Photovolt ; 24(5): 623-633, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27667911

RESUMO

We present a universally applicable 3D-printed external light trap for enhanced absorption in solar cells. The macroscopic external light trap is placed at the sun-facing surface of the solar cell and retro-reflects the light that would otherwise escape. The light trap consists of a reflective parabolic concentrator placed on top of a reflective cage. Upon placement of the light trap, an improvement of 15% of both the photocurrent and the power conversion efficiency in a thin-film nanocrystalline silicon (nc-Si:H) solar cell is measured. The trapped light traverses the solar cell several times within the reflective cage thereby increasing the total absorption in the cell. Consequently, the trap reduces optical losses and enhances the absorption over the entire spectrum. The components of the light trap are 3D printed and made of smoothened, silver-coated thermoplastic. In contrast to conventional light trapping methods, external light trapping leaves the material quality and the electrical properties of the solar cell unaffected. To explain the theoretical operation of the external light trap, we introduce a model that predicts the absorption enhancement in the solar cell by the external light trap. The corresponding calculated path length enhancement shows good agreement with the empirically derived value from the opto-electrical data of the solar cell. Moreover, we analyze the influence of the angle of incidence on the parasitic absorptance to obtain full understanding of the trap performance. © 2015 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons, Ltd.

5.
Opt Express ; 24(14): A1158-75, 2016 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-27410902

RESUMO

The reflection of incident sunlight by photovoltaic modules prevents them from reaching their theoretical energy conversion limit. We explore the effectiveness of a universal external light trap that can tackle this reflection loss. A unique feature of external light traps is their capability to simultaneously recycle various broadband sources of reflection on the module level, such as the reflection from the metal front grid, the front interfaces, the reflective backside of the cell, and the white back sheet. The reflected light is recycled in the space between the solar cell and a mirror above the solar cell. A concentrator funnels the light into this cage through a small aperture in the mirror. As a proof-of-principle experiment, a significant reflectance reduction of a bare crystalline silicon (c-Si) photodiode is demonstrated. In contrast to conventional light trapping methods, external light trapping does not induce any damage to the active solar cell material. Moreover, this is a universally applicable technology that enables the use of thin and planar solar cells of superior electrical quality that were so far hindered by limited optical absorption. We considered several trap designs and identified fabrication issues. A series of prototype millimeter-scale external metal light traps were milled and applied on an untextured c-Si photodiode, which is used as a model for future thin solar cells. We determined the concentrator transmittance and analyzed the effect of both the concentration factor and cage height on the absorptance and spatial intensity distribution on the surface of the solar cell. This relatively simple and comprehensive light management solution can be a promising candidate for highly efficient solar modules using thin c-Si solar cells.

6.
Nat Commun ; 6: 8788, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26537568

RESUMO

Electron energy-loss spectroscopy can be used for detailed spatial and spectral characterization of optical excitations in metal nanoparticles. In previous electron energy-loss experiments on silver nanoparticles with radii smaller than 20 nm, only the dipolar surface plasmon resonance was assumed to play a role. Here, applying electron energy-loss spectroscopy to individual silver nanoparticles encapsulated in silicon nitride, we observe besides the usual dipole resonance an additional surface plasmon resonance corresponding to higher angular momenta for nanoparticle radii as small as 4 nm. We study the radius and electron beam impact position dependence of both resonances separately. For particles smaller than 4 nm in radius the higher-order surface plasmon mode disappears, in agreement with generalized non-local optical response theory, while the dipole resonance blueshift exceeds our theoretical predictions. Unlike in optical spectra, multipole surface plasmons are important in electron energy-loss spectra even of ultrasmall metallic nanoparticles.

7.
Plasmonics ; 10(5): 1089-1096, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26380576

RESUMO

Plasmonic properties of metal nanostructures are appealing due to their potential to enhance photovoltaics or sensing performance. Our aim was to identify the plasmonic characteristics of silver nanoneedles on a reflective layer in the polarized optical response. Experimental ellipsometry results are complemented by finite-difference time-domain (FDTD) calculations. Plasmon resonances on the nanoneedles can indeed be observed in the polarized optical response. This study reveals the details of the complex antenna-like behaviour of the nanoneedles which gives an agreement between experiment and FDTD simulation. The simulations show that the plasmon resonances lead to an effective negative refractive index, originating from the negative refractive index of the nanoneedles in combination with its supporting substrate, i.e. a mirror. This original study of a complex plasmonic system by ellipsometry and FDTD has great relevance for applications, making use of intricate light matter interaction.

8.
Opt Express ; 20(25): 27327-36, 2012 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-23262683

RESUMO

In this work the effects of plasmonics, nano-focusing, and orthogonalization of carrier and photon pathways are simultaneously explored by measuring the photocurrents in an elongated nano-scale solar cell with a silver nanoneedle inside. The silver nanoneedles formed the support of a conformally grown hydrogenated amorphous silicon (a-Si:H) n-i-p junction around it. A spherical morphology of the solar cell functions as a nano-lens, focusing incoming light directly on the silver nanoneedle. We found that plasmonics, geometric optics, and Fresnel reflections affect the nanostructured solar cell performance, depending strongly on light incidence angle and polarization. This provides valuable insight in solar cell processes in which novel concepts such as plasmonics, elongated nanostructures, and nano-lenses are used.


Assuntos
Hidrogênio/química , Nanoestruturas/química , Nanotecnologia/métodos , Silício/química , Energia Solar , Lentes , Luz , Cimento de Policarboxilato/química , Espalhamento de Radiação , Prata/química
9.
Phys Chem Chem Phys ; 14(26): 9336-42, 2012 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-22419008

RESUMO

The catalytic activity of oxide-supported metal nanoclusters strongly depends on their size and support. In this study, the origin of morphology transformation and chemical state changes during the oxidative dehydrogenation of cyclohexene was investigated in terms of metal-support interactions. Model catalyst systems were prepared by deposition of size selected subnanometer Co(27±4) clusters on various metal oxide supports (Al(2)O(3), ZnO and TiO(2) and MgO). The oxidation state and reactivity of the supported cobalt clusters were investigated by temperature programmed reaction (TPRx) and in situ grazing incidence X-ray absorption (GIXAS) during oxidative dehydrogenation of cyclohexene, while the sintering resistance monitored with grazing incidence small angle X-ray scattering (GISAXS). The activity and selectivity of cobalt clusters shows strong dependence on the support. GIXAS reveals that metal-support interaction plays a key role in the reaction. The most pronounced support effect is observed for MgO, where during the course of the reaction in its activity, composition and size dynamically evolving nanoassembly is formed from subnanometer cobalt clusters.

10.
Phys Chem Chem Phys ; 12(21): 5585-95, 2010 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-20424733

RESUMO

The preparation, characterization and catalytic reactivity of a GaN supported Pt catalyst in the hydrogenation of ethene are presented in this feature article, highlighting the use of in situ characterization of the material properties during sample handling and catalysis by combining temperature programmed reaction with in situ grazing incidence small-angle X-ray scattering and X-ray absorption spectroscopy. The catalysts are found to be sintering resistant at elevated temperatures as well as during reduction and hydrogenation reactions. In contrast to Pt particles of approximately 7 nm diameter, smaller particles of 1.8 nm in size are found to dynamically adapt their shape and oxidation state to the changes in the reaction environment. These smaller Pt particles also showed an initial deactivation in ethene hydrogenation, which is paralleled by the change in the particle shape. The subtle temperature-dependent X-ray absorbance of the 1.8 nm sized Pt particles indicates that subtle variations in the electronic structure induced by the state of reduction by electron tunnelling over the Schottky barrier between the Pt particles and the GaN support can be monitored.

12.
Chemphyschem ; 10(3): 512-5, 2009 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-19145609

RESUMO

Phased out: A combination of electrochemical and optical techniques is used to study the interaction of hydrogen with palladium nanoclusters. Hydrogen pressure-composition isotherms reveal the reduced presence of the beta phase in palladium nanoclusters. Hydrogen extraction transients relate the reduced miscibility gap to a core-shell phase transformation in the palladium nanoclusters (see picture).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...