Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1304765, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38343543

RESUMO

Clinical applications of CAR-T cells are limited by the scarcity of tumor-specific targets and are often afflicted with the same on-target/off-tumor toxicities that plague other cancer treatments. A new promising strategy to enforce tumor selectivity is the use of logic-gated, two-receptor systems. One well-described application is termed Tmod™, which originally utilized a blocking inhibitory receptor directed towards HLA-I target antigens to create a protective NOT gate. Here we show that the function of Tmod blockers targeting non-HLA-I antigens is dependent on the height of the blocker antigen and is generally compatible with small, membrane-proximal targets. We compensate for this apparent limitation by incorporating modular hinge units to artificially extend or retract the ligand-binding domains relative to the effector cell surface, thereby modulating Tmod activator and blocker function. By accounting for structural differences between activator and blocker targets, we developed a set of simple geometric parameters for Tmod receptor design that enables targeting of blocker antigens beyond HLA-I, thereby broadening the applications of logic-gated cell therapies.


Assuntos
Neoplasias , Linfócitos T , Humanos , Antígenos/metabolismo
2.
Clin Immunol ; 241: 109030, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35561999

RESUMO

Immune cells that are engineered with receptors to integrate signals from multiple antigens offer a promising route to achieve the elusive property of therapeutic selectivity in cancer patients. Several types of multi-signal integrators have been described, among them mechanisms that pair activating and inhibitory receptors which are termed NOT gates by analogy to logical operations performed by machines. Here we review one such NOT-gated signal integrator called the Tmod system which is being developed for patients with solid tumors. Coupled with rigorous selection for patients with defined lesions in their tumor genomes (loss of heterozygosity), the Tmod approach presents an unusual opportunity to create truly selective therapies for certain cancer patients. Several of these agents are advancing toward the clinic, supported by a large body of quantitative preclinical data.


Assuntos
Imunoterapia , Neoplasias , Humanos , Imunoterapia Adotiva , Neoplasias/terapia
3.
Nat Commun ; 13(1): 2582, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35562172

RESUMO

Regulated transgene expression is an integral component of gene therapies, cell therapies and biomanufacturing. However, transcription factor-based regulation, upon which most applications are based, suffers from complications such as epigenetic silencing that limit expression longevity and reliability. Constitutive transgene transcription paired with post-transcriptional gene regulation could combat silencing, but few such RNA- or protein-level platforms exist. Here we develop an RNA-regulation platform we call "PERSIST" which consists of nine CRISPR-specific endoRNases as RNA-level activators and repressors as well as modular OFF- and ON-switch regulatory motifs. We show that PERSIST-regulated transgenes exhibit strong OFF and ON responses, resist silencing for at least two months, and can be readily layered to construct cascades, logic functions, switches and other sophisticated circuit topologies. The orthogonal, modular and composable nature of this platform as well as the ease in constructing robust and predictable gene circuits promises myriad applications in gene and cell therapies.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , RNA , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Reprodutibilidade dos Testes , Fatores de Transcrição/genética , Transgenes
4.
Front Immunol ; 13: 826747, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359952

RESUMO

Progress toward improved solid-tumor treatment has long been hindered by the lack of truly tumor-specific targets. We have developed an approach to T cell therapy based on a dual-receptor system called Tmod™ that addresses this problem. The Tmod system exploits one of the few common genetic differences between tumor and normal cells: loss of heterozygosity (LOH). It utilizes the basic mechanistic logic that evolved in early vertebrates to mediate self vs. non-self discrimination, where an activation stimulus is blocked by self-ligands. Tmod constructs employ a chimeric antigen receptor (CAR) or T cell receptor (TCR) as activator component and a modified LIR-1 inhibitory receptor (blocker) to achieve high selectivity based on expression of the blocker antigen (Ag). Here we explore the in vitro pharmacology of a blocker directed at the HLA-A*02 Ag paired with either a mesothelin CAR or an HLA-A*11-restricted KRAS peptide TCR. While more sensitive to receptor expression changes on effector cells, we show that Tmod response is well-buffered against variations in Ag levels on target cells. In addition, the data reveal at least two distinguishable pharmacologic mechanisms of Tmod blocker function: (1) reducing activator sensitivity and (2) decreasing activation magnitude.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Animais , Linhagem Celular Tumoral , Terapia Baseada em Transplante de Células e Tecidos , Antígenos HLA-A , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T
5.
J Immunother Cancer ; 10(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35091455

RESUMO

BACKGROUND: Mesothelin (MSLN) is a classic tumor-associated antigen that is expressed in lung cancer and many other solid tumors. However, MSLN is also expressed in normal mesothelium which creates a significant risk of serious inflammation for MSLN-directed therapeutics. We have developed a dual-receptor (Tmod™) system that exploits the difference between tumor and normal tissue in a subset of patients with defined heterozygous gene loss (LOH) in their tumors. METHODS: T cells engineered with the MSLN CAR Tmod construct described here contain (1) a novel MSLN-activated CAR and (2) an HLA-A*02-gated inhibitory receptor (blocker). A*02 binding is intended to override T-cell cytotoxicity, even in the presence of MSLN. The Tmod system is designed to treat heterozygous HLA class I patients, selected for HLA LOH. When A*02 is absent from tumors selected for LOH, the MSLN Tmod cells are predicted to mediate potent killing of the MSLN(+)A*02(-) malignant cells. RESULTS: The sensitivity of the MSLN Tmod cells is comparable with a benchmark MSLN CAR-T that was active but toxic in the clinic. Unlike MSLN CAR-T cells, the Tmod system robustly protects surrogate "normal" cells even in mixed-cell populations in vitro and in a xenograft model. The MSLN CAR can also be paired with other HLA class I blockers, supporting extension of the approach to patients beyond A*02 heterozygotes. CONCLUSIONS: The Tmod mechanism exemplified by the MSLN CAR Tmod construct provides an alternative route to leverage solid-tumor antigens such as MSLN in safer, more effective ways than previously possible.


Assuntos
Antígeno HLA-A2/genética , Imunoterapia Adotiva/métodos , Mesotelina/imunologia , Neoplasias/terapia , Receptores de Antígenos Quiméricos/imunologia , Animais , Linhagem Celular Tumoral , Feminino , Antígeno HLA-A2/imunologia , Humanos , Perda de Heterozigosidade , Camundongos , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Ann N Y Acad Sci ; 1506(1): 98-117, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34786712

RESUMO

Synthetic biology has the potential to transform cell- and gene-based therapies for a variety of diseases. Sophisticated tools are now available for both eukaryotic and prokaryotic cells to engineer cells to selectively achieve therapeutic effects in response to one or more disease-related signals, thus sparing healthy tissue from potentially cytotoxic effects. This report summarizes the Keystone eSymposium "Synthetic Biology: At the Crossroads of Genetic Engineering and Human Therapeutics," which took place on May 3 and 4, 2021. Given that several therapies engineered using synthetic biology have entered clinical trials, there was a clear need for a synthetic biology symposium that emphasizes the therapeutic applications of synthetic biology as opposed to the technical aspects. Presenters discussed the use of synthetic biology to improve T cell, gene, and viral therapies, to engineer probiotics, and to expand upon existing modalities and functions of cell-based therapies.


Assuntos
Congressos como Assunto/tendências , Engenharia Genética/tendências , Terapia Genética/tendências , Relatório de Pesquisa , Biologia Sintética/tendências , Animais , Terapia Baseada em Transplante de Células e Tecidos/métodos , Terapia Baseada em Transplante de Células e Tecidos/tendências , Marcação de Genes/métodos , Marcação de Genes/tendências , Engenharia Genética/métodos , Terapia Genética/métodos , Humanos , Células Matadoras Naturais/imunologia , Aprendizado de Máquina/tendências , Biologia Sintética/métodos , Linfócitos T/imunologia
7.
Nat Commun ; 11(1): 5690, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33173034

RESUMO

Synthetic biology has the potential to bring forth advanced genetic devices for applications in healthcare and biotechnology. However, accurately predicting the behavior of engineered genetic devices remains difficult due to lack of modularity, wherein a device's output does not depend only on its intended inputs but also on its context. One contributor to lack of modularity is loading of transcriptional and translational resources, which can induce coupling among otherwise independently-regulated genes. Here, we quantify the effects of resource loading in engineered mammalian genetic systems and develop an endoribonuclease-based feedforward controller that can adapt the expression level of a gene of interest to significant resource loading in mammalian cells. Near-perfect adaptation to resource loads is facilitated by high production and catalytic rates of the endoribonuclease. Our design is portable across cell lines and enables predictable tuning of controller function. Ultimately, our controller is a general-purpose device for predictable, robust, and context-independent control of gene expression.


Assuntos
Endorribonucleases/genética , Engenharia Genética/métodos , Mamíferos/genética , Biologia Sintética/métodos , Animais , Linhagem Celular , Expressão Gênica , Humanos , Modelos Biológicos
8.
Mol Immunol ; 128: 298-310, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33012527

RESUMO

We describe an approach to cancer therapy based on exploitation of common losses of genetic material in tumor cells (loss of heterozygosity) (Basilion et al., 1999; Beroukhim et al., 2010). This therapeutic concept addresses the fundamental problem of discrimination between tumor and normal cells and can be applied in principle to the large majority of tumors. It utilizes modular activator/blocker elements that integrate signals related to the presence and absence of ligands displayed on the cell surface (Fedorov et al., 2013). We show that the targeting system works robustly in vitro and in a mouse cancer model where absence of the HLA-A*02 allele releases a brake on engineered T cells activated by the CD19 surface antigen. This therapeutic approach potentially opens a route toward a large, new source of cancer targets.


Assuntos
Perda de Heterozigosidade/imunologia , Neoplasias/imunologia , Linfócitos T/imunologia , Alelos , Animais , Antígenos CD19/imunologia , Linhagem Celular Tumoral , Feminino , Antígenos HLA-A/imunologia , Humanos , Células Jurkat , Ligantes , Camundongos , Camundongos Endogâmicos NOD
9.
Nucleic Acids Res ; 47(18): e106, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31372658

RESUMO

Biological research is relying on increasingly complex genetic systems and circuits to perform sophisticated operations in living cells. Performing these operations often requires simultaneous delivery of many genes, and optimizing the stoichiometry of these genes can yield drastic improvements in performance. However, sufficiently sampling the large design space of gene expression stoichiometries in mammalian cells using current methods is cumbersome, complex, or expensive. We present a 'poly-transfection' method as a simple yet high-throughput alternative that enables comprehensive evaluation of genetic systems in a single, readily-prepared transfection sample. Each cell in a poly-transfection represents an independent measurement at a distinct gene expression stoichiometry, fully leveraging the single-cell nature of transfection experiments. We first benchmark poly-transfection against co-transfection, showing that titration curves for commonly-used regulators agree between the two methods. We then use poly-transfections to efficiently generate new insights, for example in CRISPRa and synthetic miRNA systems. Finally, we use poly-transfection to rapidly engineer a difficult-to-optimize miRNA-based cell classifier for discriminating cancerous cells. One-pot evaluation enabled by poly-transfection accelerates and simplifies the design of genetic systems, providing a new high-information strategy for interrogating biology.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Transfecção/métodos , Animais , Sistemas CRISPR-Cas/genética , Expressão Gênica/genética , Humanos , MicroRNAs/genética
10.
Nat Commun ; 9(1): 1881, 2018 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-29760420

RESUMO

Understanding and reshaping cellular behaviors with synthetic gene networks requires the ability to sense and respond to changes in the intracellular environment. Intracellular proteins are involved in almost all cellular processes, and thus can provide important information about changes in cellular conditions such as infections, mutations, or disease states. Here we report the design of a modular platform for intrabody-based protein sensing-actuation devices with transcriptional output triggered by detection of intracellular proteins in mammalian cells. We demonstrate reporter activation response (fluorescence, apoptotic gene) to proteins involved in hepatitis C virus (HCV) infection, human immunodeficiency virus (HIV) infection, and Huntington's disease, and show sensor-based interference with HIV-1 downregulation of HLA-I in infected T cells. Our method provides a means to link varying cellular conditions with robust control of cellular behavior for scientific and therapeutic applications.


Assuntos
Proteínas Reguladoras de Apoptose/análise , Técnicas Biossensoriais , Redes Reguladoras de Genes , Engenharia Genética/métodos , Hepacivirus/genética , Proteína Huntingtina/análise , Anticorpos/química , Anticorpos/metabolismo , Apoptose , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Endopeptidases/química , Genes Reporter , Células HEK293 , HIV-1/genética , HIV-1/metabolismo , Antígenos HLA/genética , Antígenos HLA/imunologia , Hepacivirus/metabolismo , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Células Jurkat , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Imagem Óptica/métodos , Plasmídeos/química , Plasmídeos/metabolismo
11.
Science ; 359(6376)2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29439214

RESUMO

Gene and engineered-cell therapies promise to treat diseases by genetically modifying cells to carry out therapeutic tasks. Although the field has had some success in treating monogenic disorders and hematological malignancies, current approaches are limited to overexpression of one or a few transgenes, constraining the diseases that can be treated with this approach and leading to potential concerns over safety and efficacy. Synthetic gene networks can regulate the dosage, timing, and localization of gene expression and therapeutic activity in response to small molecules and disease biomarkers. Such "programmable" gene and engineered-cell therapies will provide new interventions for incurable or difficult-to-treat diseases.


Assuntos
Engenharia Celular/métodos , Terapia Baseada em Transplante de Células e Tecidos , Técnicas de Reprogramação Celular , Engenharia Genética/métodos , Terapia Genética , Biologia Sintética/métodos , DNA/genética , Expressão Gênica , Redes Reguladoras de Genes , Genes Sintéticos , Humanos , RNA/genética , Proteínas Recombinantes de Fusão , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...