Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anim Ecol ; 92(5): 1075-1088, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37038648

RESUMO

How strongly predators and prey interact is both notoriously context dependent and difficult to measure. Yet across taxa, interaction strength is strongly related to predator size, prey size and prey density, suggesting that general cross-taxonomic relationships could be used to predict how strongly individual species interact. Here, we ask how accurately do general size-scaling relationships predict variation in interaction strength between specific species that vary in size and density across space and time? To address this question, we quantified the size and density dependence of the functional response of the California spiny lobster Panulirus interruptus, foraging on a key ecosystem engineer, the purple sea urchin Strongylocentrotus purpuratus, in experimental mesocosms. Based on these results, we then estimated variation in lobster-urchin interaction strength across five sites and 9 years of observational data. Finally, we compared our experimental estimates to predictions based on general size-scaling relationships from the literature. Our results reveal that predator and prey body size has the greatest effect on interaction strength when prey abundance is high. Due to consistently high urchin densities in the field, our simulations suggest that body size-relative to density-accounted for up to 87% of the spatio-temporal variation in interaction strength. However, general size-scaling relationships failed to predict the magnitude of interactions between lobster and urchin; even the best prediction from the literature was, on average, an order of magnitude (+18.7×) different than our experimental predictions. Harvest and climate change are driving reductions in the average body size of many marine species. Anticipating how reductions in body size will alter species interactions is critical to managing marine systems in an ecosystem context. Our results highlight the extent to which differences in size-frequency distributions can drive dramatic variation in the strength of interactions across narrow spatial and temporal scales. Furthermore, our work suggests that species-specific estimates for the scaling of interaction strength with body size, rather than general size-scaling relationships, are necessary to quantitatively predict how reductions in body size will alter interaction strengths.


Assuntos
Ecossistema , Kelp , Animais , Cadeia Alimentar , Kelp/fisiologia , Tamanho Corporal , Mudança Climática , Comportamento Predatório
2.
Biol Lett ; 18(10): 20220364, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36287142

RESUMO

Predator-prey interactions shape ecosystem stability and are influenced by changes in ecosystem productivity. However, because multiple biotic and abiotic drivers shape the trophic responses of predators to productivity, we often observe patterns, but not mechanisms, by which productivity drives food web structure. One way to capture mechanisms shaping trophic responses is to quantify trophic interactions among multiple trophic groups and by using complementary metrics of trophic ecology. In this study, we combine two diet-tracing methods: diet DNA and stable isotopes, for two trophic groups (top predators and intermediate predators) in both low- and high-productivity habitats to elucidate where in the food chain trophic structure shifts in response to changes in underlying ecosystem productivity. We demonstrate that while top predators show increases in isotopic trophic position (δ15N) with productivity, neither their isotopic niche size nor their DNA diet composition changes. Conversely, intermediate predators show clear turnover in DNA diet composition towards a more predatory prey base in high-productivity habitats. Taking this multi-trophic approach highlights how predator identity shapes responses in predator-prey interactions across environments with different underlying productivity, building predictive power for understanding the outcomes of ongoing anthropogenic change.


Assuntos
Ecossistema , Cadeia Alimentar , Animais , Comportamento Predatório/fisiologia , Invertebrados , Dieta
3.
Sci Rep ; 12(1): 10005, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35864129

RESUMO

In the face of an accelerating extinction crisis, scientists must draw insights from successful conservation interventions to uncover promising strategies for reversing broader declines. Here, we synthesize cases of recovery from a list of 362 species of large carnivores, ecologically important species that function as terminal consumers in many ecological contexts. Large carnivores represent critical conservation targets that have experienced historical declines as a result of direct exploitation and habitat loss. We examine taxonomic and geographic variation in current extinction risk and recovery indices, identify conservation actions associated with positive outcomes, and reveal anthropogenic threats linked to ongoing declines. We find that fewer than 10% of global large carnivore populations are increasing, and only 12 species (3.3%) have experienced genuine improvement in extinction risk, mostly limited to recoveries among marine mammals. Recovery is associated with species legislation enacted at national and international levels, and with management of direct exploitation. Conversely, ongoing declines are robustly linked to threats that include habitat modification and human conflict. Applying lessons from cases of large carnivore recovery will be crucial for restoring intact ecosystems and maintaining the services they provide to humans.


Assuntos
Carnívoros , Ecossistema , Animais , Conservação dos Recursos Naturais , Humanos , Densidade Demográfica
4.
Ecology ; 103(5): e3673, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35233769

RESUMO

Herbivores can reach extraordinary abundances in many ecosystems. When herbivore abundance is high, heavy grazing can severely defoliate primary producers and, in some cases, even drive ecosystem to undergo regime shifts from a high productivity state to a denuded, low productivity state. While the phenomenon of herbivore-driven regime shifts is well documented, we only partially understand the mechanisms underlying these events. Here, we combine herbivory experiments with 21 years of long-term monitoring data of kelp forest ecosystems to test the hypothesis that herbivores drive regime shifts when herbivory exceeds primary production. To test this hypothesis, we quantified how the foraging habits of an important group of marine herbivores-sea urchins-change with increases in sea urchin biomass and trigger regime shifts to a foundation species, giant kelp (Macrocystis pyrifera). Using experiments, we quantified how the grazing capacity of urchins increases as urchin biomass increases, then we combined these estimates of urchin grazing capacity with estimates of kelp production to predict when and where urchin grazing capacity exceeded kelp production. When grazing capacity exceeded kelp production, sea urchins caused a 50-fold reduction in giant kelp biomass. Our findings support the hypothesis that the balance between herbivory and production underlies herbivore-driven regime shifts in Southern California kelp forests and provides insight into when and where urchins are likely to force regime shifts in kelp forest ecosystems.


Assuntos
Ecossistema , Kelp , Macrocystis , Animais , Conservação dos Recursos Naturais , Cadeia Alimentar , Ouriços-do-Mar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...