Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Biol Chem ; 292(33): 13809-13822, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28659341

RESUMO

Bone and skeletal muscle mass are highly correlated in mammals, suggesting the existence of common anabolic signaling networks that coordinate the development of these two anatomically adjacent tissues. The activin signaling pathway is an attractive candidate to fulfill such a role. Here, we generated mice with conditional deletion of activin receptor (ACVR) type 2A, ACVR2B, or both, in osteoblasts, to determine the contribution of activin receptor signaling in regulating bone mass. Immunohistochemistry localized ACVR2A and ACVR2B to osteoblasts and osteocytes. Primary osteoblasts expressed activin signaling components, including ACVR2A, ACVR2B, and ACVR1B (ALK4) and demonstrated increased levels of phosphorylated Smad2/3 upon exposure to activin ligands. Osteoblasts lacking ACVR2B did not show significant changes in vitro However, osteoblasts deficient in ACVR2A exhibited enhanced differentiation indicated by alkaline phosphatase activity, mineral deposition, and transcriptional expression of osterix, osteocalcin, and dentin matrix acidic phosphoprotein 1. To investigate activin signaling in osteoblasts in vivo, we analyzed the skeletal phenotypes of mice lacking these receptors in osteoblasts and osteocytes (osteocalcin-Cre). Similar to the lack of effect in vitro, ACVR2B-deficient mice demonstrated no significant change in any bone parameter. By contrast, mice lacking ACVR2A had significantly increased femoral trabecular bone volume at 6 weeks of age. Moreover, mutant mice lacking both ACVR2A and ACVR2B demonstrated sustained increases in trabecular bone volume, similar to those in ACVR2A single mutants, at 6 and 12 weeks of age. Taken together, these results indicate that activin receptor signaling, predominantly through ACVR2A, directly and negatively regulates bone mass in osteoblasts.


Assuntos
Receptores de Activinas Tipo II/metabolismo , Osteoblastos/metabolismo , Osteócitos/metabolismo , Osteogênese , Receptores de Activinas Tipo II/química , Receptores de Activinas Tipo II/genética , Animais , Animais Recém-Nascidos , Desenvolvimento Ósseo , Proliferação de Células , Células Cultivadas , Cruzamentos Genéticos , Feminino , Fêmur , Deleção de Genes , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Desenvolvimento Muscular , Músculo Esquelético/citologia , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Mutação , Especificidade de Órgãos , Osteoblastos/citologia , Osteócitos/citologia , Crânio
3.
Tissue Eng Part B Rev ; 23(4): 362-372, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28401807

RESUMO

Tissue engineering is a promising therapeutic strategy to regenerate skeletal muscle. However, ex vivo cultivation methods typically result in a low differentiation efficiency of stem cells as well as grafts that resemble the native tissues morphologically, but lack contractile function. The application of biomimetic tensile strain provides a potent stimulus for enhancing myogenic differentiation and engineering functional skeletal muscle grafts. We reviewed integrin-dependent mechanisms that potentially link mechanotransduction pathways to the upregulation of myogenic genes. Yet, gaps in our understanding make it challenging to use these pathways to theoretically determine optimal ex vivo strain regimens. A multitude of strain protocols have been applied to in vitro cultures for the cultivation of myogenic progenitors (adipose- and bone marrow-derived stem cells and satellite cells) and transformed murine myoblasts, C2C12s. Strain regimens are characterized by orientation, amplitude, and time-dependent factors (effective frequency, duration, and the rest period between successive strain cycles). Analysis of published data has identified possible minimum/maximum values for these parameters and suggests that uniaxial strains may be more potent than biaxial strains, possibly because they more closely mimic physiologic strain profiles. The application of these biophysical stimuli for engineering 3D skeletal muscle grafts is nontrivial and typically requires custom-designed bioreactors used in combination with biomaterial scaffolds. Consideration of the physical properties of these scaffolds is critical for effective transmission of the applied strains to encapsulated cells. Taken together, these studies demonstrate that biomimetic tensile strain generally results in improved myogenic outcomes in myogenic progenitors and differentiated myoblasts. However, for 3D systems, the optimization of the strain regimen may require the entire system including cells, biomaterials, and bioreactor, to be considered in tandem.


Assuntos
Músculo Esquelético , Animais , Diferenciação Celular , Células Cultivadas , Mecanotransdução Celular , Camundongos , Desenvolvimento Muscular , Mioblastos , Engenharia Tecidual
4.
Bone Res ; 3: 14042, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26161291

RESUMO

Osteogenesis imperfecta (OI) comprises a group of heritable connective tissue disorders generally defined by recurrent fractures, low bone mass, short stature and skeletal fragility. Beyond the skeletal complications of OI, many patients also report intolerance to physical activity, fatigue and muscle weakness. Indeed, recent studies have demonstrated that skeletal muscle is also negatively affected by OI, both directly and indirectly. Given the well-established interdependence of bone and skeletal muscle in both physiology and pathophysiology and the observations of skeletal muscle pathology in patients with OI, we investigated the therapeutic potential of simultaneous anabolic targeting of both bone and skeletal muscle using a soluble activin receptor 2B (ACVR2B) in a mouse model of type III OI (oim). Treatment of 12-week-old oim mice with ACVR2B for 4 weeks resulted in significant increases in both bone and muscle that were similar to those observed in healthy, wild-type littermates. This proof of concept study provides encouraging evidence for a holistic approach to treating the deleterious consequences of OI in the musculoskeletal system.

5.
Mol Cell Biol ; 34(10): 1850-62, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24591652

RESUMO

Insulin signaling in osteoblasts regulates global energy balance by stimulating the production of osteocalcin, a bone-derived protein that promotes insulin production and action. To identify the signaling pathways in osteoblasts that mediate insulin's effects on bone and energy metabolism, we examined the function of the tuberous sclerosis 2 (Tsc2) protein, a key target important in coordinating nutrient signaling. Here, we show that loss of Tsc2 in osteoblasts constitutively activates mTOR and destabilizes Irs1, causing osteoblasts to differentiate poorly and become resistant to insulin. Young Tsc2 mutant mice demonstrate hypoglycemia with increased levels of insulin and undercarboxylated osteocalcin. However, with age, Tsc2 mutants develop metabolic features similar to mice lacking the insulin receptor in the osteoblast, including peripheral adiposity, hyperglycemia, and decreased pancreatic ß cell mass. These metabolic abnormalities appear to result from chronic elevations in undercarboxylated osteocalcin that lead to downregulation of the osteocalcin receptor and desensitization of the ß cell to this hormone. Removal of a single mTOR allele from the Tsc2 mutant mice largely normalizes the bone and metabolic abnormalities. Together, these findings suggest that Tsc2 serves as a key checkpoint in the osteoblast that is required for proper insulin signaling and acts to ensure normal bone acquisition and energy homeostasis.


Assuntos
Glucose/metabolismo , Homeostase , Osteoblastos/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Osso e Ossos/citologia , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/metabolismo , Diferenciação Celular , Células Cultivadas , Insulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Osteocalcina/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa , Microtomografia por Raio-X
6.
Curr Osteoporos Rep ; 12(2): 142-53, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24633910

RESUMO

Musculoskeletal diseases are highly prevalent with staggering annual health care costs across the globe. The combined wasting of muscle (sarcopenia) and bone (osteoporosis)-both in normal aging and pathologic states-can lead to vastly compounded risk for fracture in patients. Until now, our therapeutic approach to the prevention of such fractures has focused solely on bone, but our increasing understanding of the interconnected biology of muscle and bone has begun to shift our treatment paradigm for musculoskeletal disease. Targeting pathways that centrally regulate both bone and muscle (eg, GH/IGF-1, sex steroids, etc.) and newly emerging pathways that might facilitate communication between these 2 tissues (eg, activin/myostatin) might allow a greater therapeutic benefit and/or previously unanticipated means by which to treat these frail patients and prevent fracture. In this review, we will discuss a number of therapies currently under development that aim to treat musculoskeletal disease in precisely such a holistic fashion.


Assuntos
Androgênios/uso terapêutico , Conservadores da Densidade Óssea/uso terapêutico , Fraturas Ósseas/prevenção & controle , Hormônio Liberador de Hormônio do Crescimento/uso terapêutico , Hormônios/uso terapêutico , Hormônio do Crescimento Humano/uso terapêutico , Osteoporose/tratamento farmacológico , Sarcopenia/tratamento farmacológico , Acetamidas/uso terapêutico , Amidas/uso terapêutico , Aminofenóis/uso terapêutico , Anilidas , Anticorpos/uso terapêutico , Terapia por Exercício , Fraturas Ósseas/etiologia , Humanos , Osteoporose/complicações , Osteoporose/terapia , Fraturas por Osteoporose/prevenção & controle , Sarcopenia/complicações , Sarcopenia/terapia , Vitamina D/uso terapêutico
7.
Bone Res ; 2: 14033, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26273528

RESUMO

A large body of literature suggests that bone metabolism is susceptible to the ill effects of reactive species that accumulate in the body and cause cellular dysfunction. One of the body's front lines in defense against such damage is the transcription factor, Nrf2. This transcription factor regulates a plethora of antioxidant and cellular defense pathways to protect cells from such damage. Despite the breadth of knowledge of both the function of Nrf2 and the effects of reactive species in bone metabolism, the direct role of Nrf2 in skeletal biology has yet to be thoroughly examined. Thus, in the current study, we have examined the role of Nrf2 in postnatal bone metabolism in mice. Mice lacking Nrf2 (Nrf2(-/-)) exhibited a marked deficit in postnatal bone acquisition, which was most severe at 3 weeks of age when osteoblast numbers were 12-fold less than observed in control animals. While primary osteoblasts from Nrf2(-/-) mice functioned normally in vitro, the colony forming capacity of bone marrow stromal cells (BMSCs) from these mice was significantly reduced compared to controls. This defect could be rescued through treatment with the radical scavenger N-acetyl cysteine (NAC), suggesting that increased reactive species stress might impair early osteoblastogenesis in BMSCs and lead to the failure of bone acquisition observed in Nrf2(-/-) animals. Taken together, these studies suggest Nrf2 represents a key pathway in regulating bone metabolism, which may provide future therapeutic targets to treat osteoporosis.

8.
J Bone Miner Res ; 28(7): 1509-18, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23630111

RESUMO

The musculoskeletal system evolved in mammals to perform diverse functions that include locomotion, facilitating breathing, protecting internal organs, and coordinating global energy expenditure. Bone and skeletal muscles involved with locomotion are both derived from somitic mesoderm and accumulate peak tissue mass synchronously, according to genetic information and environmental stimuli. Aging results in the progressive and parallel loss of bone (osteopenia) and skeletal muscle (sarcopenia) with profound consequences for quality of life. Age-associated sarcopenia results in reduced endurance, poor balance, and reduced mobility that predispose elderly individuals to falls, which more frequently result in fracture because of concomitant osteoporosis. Thus, a better understanding of the mechanisms underlying the parallel development and involution of these tissues is critical to developing new and more effective means to combat osteoporosis and sarcopenia in our increasingly aged population. This perspective highlights recent advances in our understanding of mechanisms coupling bone and skeletal muscle mass, and identify critical areas where further work is needed.


Assuntos
Acidentes por Quedas , Envelhecimento , Doenças Ósseas Metabólicas/fisiopatologia , Osso e Ossos/fisiopatologia , Músculo Esquelético/fisiopatologia , Equilíbrio Postural , Sarcopenia/fisiopatologia , Animais , Humanos
9.
Bone Res ; 1(1): 85-97, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26273494

RESUMO

Growth hormone (GH) exerts profound anabolic actions during postnatal skeletal development, in part, through stimulating the production of insulin-like growth factor-1 (IGF-1) in liver and skeletal tissues. To examine the requirement for the GH receptor (GHR) in osteoblast function in bone, we used Cre-LoxP methods to disrupt the GHR from osteoblasts, both in vitro and in vivo. Disruption of GHR from primary calvarial osteoblasts in vitro abolished GH-induced signaling, as assessed by JAK2/STAT5 phosphorylation, and abrogated GH-induced proliferative and anti-apoptotic actions. Osteoblasts lacking GHR exhibited reduced IGF-1-induced Erk and Akt phosphorylation and attenuated IGF-1-induced proliferation and anti-apoptotic action. In addition, differentiation was modestly impaired in osteoblasts lacking GHR, as demonstrated by reduced alkaline phosphatase staining and calcium deposition. In order to determine the requirement for the GHR in bone in vivo, we generated mice lacking the GHR specifically in osteoblasts (ΔGHR), which were born at the expected Mendelian frequency, had a normal life span and were of normal size. Three week-old, female ΔGHR mice had significantly reduced osteoblast numbers, consistent with the in vitro data. By six weeks of age however, female ΔGHR mice demonstrated a marked increase in osteoblasts, although mineralization was impaired; a phenotype similar to that observed previously in mice lacking IGF-1R specifically in osteoblasts. The most striking phenotype occurred in male mice however, where disruption of the GHR from osteoblasts resulted in a "feminization" of bone geometry in 16 week-old mice, as observed by µCT. These results demonstrate that the GHR is required for normal postnatal bone development in both sexes. GH appears to serve a primary function in modulating local IGF-1 action. However, the changes in bone geometry observed in male ΔGHR mice suggest that, in addition to facilitating IGF-1 action, GH may function to a greater extent than previously appreciated in establishing the sexual dimorphism of the skeleton.

10.
Nat Rev Rheumatol ; 8(11): 674-83, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23045255

RESUMO

Surprising new discoveries in the field of skeletal biology show that bone cells produce endocrine hormones that regulate phosphate and glucose homeostasis. In this Review, we examine the features of these new endocrine pathways and discuss their physiological importance in the context of our current understanding of energy metabolism and mineral homeostasis. Consideration of evolutionary and comparative biology provides clues that a key driving force for the emergence of these hormonal pathways was the development of a large, energy-expensive musculoskeletal system. Specialized bone cells also evolved and produced endocrine hormones to integrate the skeleton in global mineral and nutrient homeostasis. The recognition of bone as a true endocrine organ represents a fertile area for further research and should improve the diagnosis and treatment of metabolic diseases such as osteoporosis and diabetes mellitus.


Assuntos
Evolução Biológica , Fatores de Crescimento de Fibroblastos/metabolismo , Hormônios/metabolismo , Osteocalcina/metabolismo , Osteócitos/metabolismo , Esqueleto , Animais , Sistema Endócrino , Fator de Crescimento de Fibroblastos 23 , Glucose/metabolismo , Homeostase , Humanos , Fosfatos/metabolismo
11.
J Clin Invest ; 120(11): 4007-20, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20921627

RESUMO

Skeletal muscle development, nutrient uptake, and nutrient utilization is largely coordinated by growth hormone (GH) and its downstream effectors, in particular, IGF-1. However, it is not clear which effects of GH on skeletal muscle are direct and which are secondary to GH-induced IGF-1 expression. Thus, we generated mice lacking either GH receptor (GHR) or IGF-1 receptor (IGF-1R) specifically in skeletal muscle. Both exhibited impaired skeletal muscle development characterized by reductions in myofiber number and area as well as accompanying deficiencies in functional performance. Defective skeletal muscle development, in both GHR and IGF-1R mutants, was attributable to diminished myoblast fusion and associated with compromised nuclear factor of activated T cells import and activity. Strikingly, mice lacking GHR developed metabolic features that were not observed in the IGF-1R mutants, including marked peripheral adiposity, insulin resistance, and glucose intolerance. Insulin resistance in GHR-deficient myotubes derived from reduced IR protein abundance and increased inhibitory phosphorylation of IRS-1 on Ser 1101. These results identify distinct signaling pathways through which GHR regulates skeletal muscle development and modulates nutrient metabolism.


Assuntos
Resistência à Insulina , Insulina/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Receptores da Somatotropina/metabolismo , Transdução de Sinais/fisiologia , Animais , Comportamento Animal , Células Cultivadas , Ingestão de Alimentos , Hormônio do Crescimento/metabolismo , Humanos , Interleucina-4/metabolismo , Fusão de Membrana/fisiologia , Camundongos , Camundongos Knockout , Atividade Motora , Músculo Esquelético/citologia , Mioblastos/citologia , Mioblastos/metabolismo , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptores da Somatotropina/genética
12.
Cell ; 142(2): 309-19, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20655471

RESUMO

Global energy balance in mammals is controlled by the actions of circulating hormones that coordinate fuel production and utilization in metabolically active tissues. Bone-derived osteocalcin, in its undercarboxylated, hormonal form, regulates fat deposition and is a potent insulin secretagogue. Here, we show that insulin receptor (IR) signaling in osteoblasts controls osteoblast development and osteocalcin expression by suppressing the Runx2 inhibitor Twist2. Mice lacking IR in osteoblasts have low circulating undercarboxylated osteocalcin and reduced bone acquisition due to decreased bone formation and deficient numbers of osteoblasts. With age, these mice develop marked peripheral adiposity and hyperglycemia accompanied by severe glucose intolerance and insulin resistance. The metabolic abnormalities in these mice are improved by infusion of undercarboxylated osteocalcin. These results indicate the existence of a bone-pancreas endocrine loop through which insulin signaling in the osteoblast ensures osteoblast differentiation and stimulates osteocalcin production, which in turn regulates insulin sensitivity and pancreatic insulin secretion.


Assuntos
Osteoblastos/metabolismo , Osteogênese , Receptor de Insulina/metabolismo , Adiposidade , Animais , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Resistência à Insulina , Masculino , Camundongos , Osteoblastos/citologia , Osteocalcina/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Proteína 1 Relacionada a Twist/metabolismo
13.
Mol Endocrinol ; 24(3): 644-56, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20133448

RESUMO

GH promotes longitudinal growth and regulates multiple cellular functions in humans and animals. GH signals by binding to GH receptor (GHR) to activate the tyrosine kinase, Janus kinase 2 (JAK2), and downstream pathways including signal transducer and activator of transcription 5 (STAT5), thereby regulating expression of genes including IGF-I. GH exerts effects both directly and via IGF-I, which signals by activating the IGF-I receptor (IGF-IR). IGF-IR is a cell surface receptor that contains intrinsic tyrosine kinase activity within its intracellular domain. In this study, we examined the potential role of IGF-IR in facilitating GH-induced signal transduction, using mouse primary calvarial osteoblasts with Lox-P sites flanking both IGF-IR alleles. These cells respond to both GH and IGF-I and in vitro infection with an adenovirus that drives expression of Cre recombinase (Ad-Cre) dramatically reduces IGF-IR abundance without affecting the abundance of GHR, JAK2, STAT5, or ERK. Notably, infection with Ad-Cre, but not a control adenovirus, markedly inhibited acute GH-induced STAT5 activity (more than doubling the ED(50) and reducing the maximum activity by nearly 50%), while sparing GH-induced ERK activity, and markedly inhibited GH-induced transactivation of a STAT5-dependent luciferase reporter. The effect of Ad-Cre on GH signaling was specific, as platelet-derived growth factor-induced signaling was unaffected by Ad-Cre-mediated reduction of IGF-IR. Ad-Cre-mediated inhibition of GH signaling was reversed by adenoviral reexpression of IGF-IR, but not by infection with an adenovirus that drives expression of a hemagglutination-tagged somatostatin receptor, which drives expression of the unrelated somatostatin receptor, and Ad-Cre infection of nonfloxed osteoblasts did not affect GH signaling. Notably, infection with an adenovirus encoding a C-terminally truncated IGF-IR that lacks the tyrosine kinase domain partially rescued both acute GH-induced STAT5 activity and GH-induced IGF-I gene expression in cells in which endogenous IGF-IR was reduced. These data, in concert with our earlier findings that GH induces a GHR-JAK2-IGF-IR complex, suggest a novel function for IGF-IR. In addition to its role as a key IGF-I signal transducer, this receptor may directly facilitate acute GH signaling. The implications of these findings are discussed.


Assuntos
Hormônio do Crescimento Humano/farmacologia , Osteoblastos/metabolismo , Receptor IGF Tipo 1/metabolismo , Fator de Transcrição STAT5/metabolismo , Adenoviridae/genética , Animais , Linhagem Celular , Células Cultivadas , Eletroforese em Gel de Poliacrilamida , Humanos , Immunoblotting , Imunoprecipitação , Camundongos , Osteoblastos/efeitos dos fármacos , Reação em Cadeia da Polimerase , Receptor IGF Tipo 1/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
14.
J Biol Chem ; 284(30): 19937-44, 2009 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-19460757

RESUMO

Growth hormone (GH) plays a pivotal role in growth and metabolism, with growth promotion mostly attributed to generation of insulin-like growth factor I (IGF-I) in liver or at local sites of GH action, whereas the metabolic effects of GH are considered to be intrinsic to GH itself. To distinguish the effects of GH from those of IGF-I, we developed a Cre-lox-mediated model of tissue-specific deletion of the growth hormone receptor (GHR). Near total deletion of the GHR in liver (GHRLD) had no effect on total body or bone linear growth despite a >90% suppression of circulating IGF-I; however, total bone density was significantly reduced. Circulating GH was increased 4-fold, and GHRLD displayed insulin resistance, glucose intolerance, and increased circulating free fatty acids. Livers displayed marked steatosis, the result of increased triglyceride synthesis and decreased efflux; reconstitution of hepatic GHR signaling via adenoviral expression of GHR restored triglyceride output to normal, whereas IGF-I infusion did not correct steatosis despite restoration of circulating GH to normal. Thus, with near total absence of circulating IGF-I, GH action at the growth plate, directly and via locally generated IGF-I, can regulate bone growth, but at the expense of diabetogenic, lipolytic, and hepatosteatotic consequences. Our results indicate that IGF-I is essential for bone mineral density, whereas hepatic GH signaling is essential to regulate intrahepatic lipid metabolism. We propose that circulating IGF-I serves to amplify the growth-promoting effects of GH, while simultaneously dampening the catabolic effects of GH.


Assuntos
Hormônio do Crescimento/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Receptores da Somatotropina/genética , Receptores da Somatotropina/metabolismo , Animais , Peso Corporal , Desenvolvimento Ósseo , Metabolismo dos Carboidratos , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Deleção de Genes , Expressão Gênica , Resistência à Insulina , Fígado/patologia , Camundongos
15.
J Biol Chem ; 282(43): 31666-74, 2007 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-17698843

RESUMO

Growth hormone (GH) affects bone size and mass in part through stimulating insulin-like growth factor type 1 (IGF-1) production in liver and bone. Whether GH acts independent of IGF-1 in bone remains unclear. To define the mode of GH action in bone, we have used a Cre/loxP system in which the type 1 IGF-1 receptor (Igf1r) has been disrupted specifically in osteoblasts in vitro and in vivo. Calvarial osteoblasts from mice homozygous for the floxed IGF-1R allele (IGF-1R(flox/flox)) were infected with adenoviral vectors expressing Cre. Disruption of IGF-1R mRNA (>90%) was accompanied by near elimination of IGF-1R protein but retention of GHR protein. GH-induced STAT5 activation was consistently greater in osteoblasts with an intact IGF-1R. Osteoblasts lacking IGF-1R retained GH-induced ERK and Akt phosphorylation and GH-stimulated IGF-1 and IGFBP-3 mRNA expression. GH-induced osteoblast proliferation was abolished by Cre-mediated disruption of the IGF-1R or co-incubation of cells with an IGF-1-neutralizing antibody. By contrast, GH inhibited apoptosis in osteoblasts lacking the IGF-1R. To examine the effects of GH on osteoblasts in vivo, mice wild type for the IGF-1R treated with GH subcutaneously for 7 days showed a doubling in the number of osteoblasts lining trabecular bone, whereas osteoblast numbers in similarly treated mice lacking the IGF-1R in osteoblasts were not significantly affected. These results indicate that although direct IGF-1R-independent actions of GH on osteoblast apoptosis can be demonstrated in vitro, IGF-1R is required for anabolic effects of GH in osteoblasts in vivo.


Assuntos
Hormônio do Crescimento/farmacologia , Modelos Biológicos , Osteoblastos/efeitos dos fármacos , Receptor IGF Tipo 1/metabolismo , Adenoviridae/genética , Alelos , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Feminino , Vetores Genéticos , Proteínas de Fluorescência Verde/metabolismo , Hormônio do Crescimento/administração & dosagem , Injeções Subcutâneas , Camundongos , Camundongos Transgênicos , RNA Mensageiro/metabolismo , Receptor IGF Tipo 1/genética , Transdução de Sinais/efeitos dos fármacos , Crânio/citologia , Fatores de Tempo
16.
J Biol Chem ; 282(35): 25649-58, 2007 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-17553792

RESUMO

Defective bone formation is common in patients with diabetes, suggesting that insulin normally exerts anabolic actions in bone. However, because insulin can cross-activate the insulin-like growth factor type 1 receptor (IGF-1R), which also functions in bone, it has been difficult to establish the direct (IGF-1-independent) actions of insulin in osteoblasts. To overcome this problem, we examined insulin signaling and action in primary osteoblasts engineered for conditional disruption of the IGF-1 receptor (DeltaIGF-1R). Calvarial osteoblasts from mice carrying floxed IGF-1R alleles were infected with adenoviral vectors expressing the Cre recombinase (Ad-Cre) or green fluorescent protein (Ad-GFP) as control. Disruption of IGF-1R mRNA (>90%) eliminated IGF-1R without affecting insulin receptor (IR) mRNA and protein expression and eliminated IGF-1R/IR hybrids. In DeltaIGF-1R osteoblasts, insulin signaling was markedly increased as evidenced by increased phosphorylation of insulin receptor substrate 1/2 and enhanced ERK/Akt activation. Microarray analysis of RNA samples from insulin-treated, DeltaIGF-1R osteoblasts revealed striking changes in several genes known to be downstream of ERK including Glut-1 and c-fos. Treatment of osteoblasts with insulin induced Glut-1 mRNA, increased 2-[1,2-(3)H]-deoxy-d-glucose uptake, and enhanced proliferation. Moreover, insulin treatment rescued the defective differentiation and mineralization of DeltaIGF-1R osteoblasts, suggesting that IR signaling can compensate, at least in part, for loss of IGF-1R signaling. We conclude that insulin exerts direct anabolic actions in osteoblasts by activation of its cognate receptor and that the strength of insulin-generated signals is tempered through interactions with the IGF-1R.


Assuntos
Insulina/metabolismo , Osteoblastos/metabolismo , Osteogênese/fisiologia , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Transdução de Sinais/fisiologia , Crânio/metabolismo , Adenoviridae , Animais , Antimetabólitos/farmacologia , Proliferação de Células/efeitos dos fármacos , Desoxiglucose/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Transportador de Glucose Tipo 1 , Hipoglicemiantes/metabolismo , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Proteínas Substratos do Receptor de Insulina , Integrases/genética , Integrases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Osteoblastos/citologia , Osteogênese/efeitos dos fármacos , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/biossíntese , Receptor IGF Tipo 1/deficiência , Transdução de Sinais/efeitos dos fármacos , Crânio/citologia
17.
Breast Cancer Res ; 7(5): R819-27, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16168128

RESUMO

INTRODUCTION: Polyamines affect proliferation, differentiation, migration and apoptosis of cells, indicating their potential as a target for cancer chemotherapy. Ornithine decarboxylase converts ornithine to putrescine and is the rate-limiting step in polyamine synthesis.alpha-Difluoromethylornithine (DFMO) irreversibly inhibits ornithine decarboxylase and MDA-MB-435 human breast cancer metastasis to the lung without blocking orthotopic tumor growth. This study tested the effects of DFMO on orthotopic tumor growth and lung colonization of another breast cancer cell line (MDA-MB-231) and the effects on bone metastasis of MDA-MB-435 cells. METHODS: MDA-MB-231 cells were injected into the mammary fat pad of athymic mice. DFMO treatment (2% per orally) began at the day of tumor cell injection or 21 days post injection. Tumor growth was measured weekly. MDA-MB-231 cells were injected into the tail vein of athymic mice. DFMO treatment began 7 days prior to injection, or 7 or 14 days post injection. The number and incidence of lung metastases were determined. Green fluorescent protein-tagged MDA-MB-435 cells were injected into the left cardiac ventricle in order to assess the incidence and extent of metastasis to the femur. DFMO treatment began 7 days prior to injection. RESULTS: DFMO treatment delayed MDA-MB-231 orthotopic tumor growth to a greater extent than growth of MDA-MB-435 tumors. The most substantial effect on lung colonization by MDA-MB-231 cells occurred when DFMO treatment began 7 days before intravenous injection of tumor cells (incidence decreased 28% and number of metastases per lung decreased 35-40%). When DFMO treatment began 7 days post injection, the incidence and number of metastases decreased less than 10%. Surprisingly, treatment initiated 14 days after tumor cell inoculation resulted in a nearly 50% reduction in the number of lung metastases without diminishing the incidence. After intracardiac injection, DFMO treatment decreased the incidence of bone metastases (55% vs 87%) and the area occupied by the tumor (1.66 mm2 vs 4.51 mm2, P < 0.05). CONCLUSION: Taken together, these data demonstrate that DFMO exerts an anti-metastatic effect in more than one hormone-independent breast cancer, for which no standard form of biologically-based treatment exists. Importantly, the data show that DFMO is effective against metastasis to multiple sites and that treatment is generally more effective when administered early.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Ósseas/prevenção & controle , Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Eflornitina/uso terapêutico , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/secundário , Metástase Neoplásica/prevenção & controle , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...