Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 12(2)2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31991664

RESUMO

Alternative routes of administration are one approach that could be used to bypass the blood-brain barrier (BBB) for effective drug delivery to the central nervous system (CNS). Here, we focused on intranasal delivery of polymer nanoparticles. We hypothesized that surface modification of poly(lactic-co-glycolic acid) (PLGA) nanoparticles with rabies virus glycoprotein (RVG29) would increase residence time and exposure of encapsulated payload to the CNS compared to non-targeted nanoparticles. Delivery kinetics and biodistribution were analyzed by administering nanoparticles loaded with the carbocyanine dye 1,1'-Dioctadecyl-3,3,3',3'-Tetramethylindotricarbocyanine Iodide (DiR) to healthy mice. Intranasal administration yielded minimal exposure of nanoparticle payload to most peripheral organs and rapid, effective delivery to whole brain. Regional analysis of payload delivery within the CNS revealed higher delivery to tissues closest to the trigeminal nerve, including the olfactory bulb, striatum, midbrain, brainstem, and cervical spinal cord. RVG29 surface modifications presented modest targeting benefits to the striatum, midbrain, and brainstem 2 h after administration, although targeting was not observed 30 min or 6 h after administration. Payload delivery to the trigeminal nerve was 3.5× higher for targeted nanoparticles compared to control nanoparticles 2 h after nanoparticle administration. These data support a nose-to-brain mechanism of drug delivery that closely implicates the trigeminal nerve for payload delivery from nanoparticles via transport of intact nanoparticles and eventual diffusion of payload. Olfactory and CSF routes are also observed to play a role. These data advance the utility of targeted nanoparticles for nose-to-brain drug delivery of lipophilic payloads and provide mechanistic insight to engineer effective delivery vectors to treat disease in the CNS.

2.
Methods Mol Biol ; 1831: 191-199, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30051433

RESUMO

Biodistribution is a valuable technique used to determine payload delivery from nanocarrier to organs of interest in preclinical models. Fluorescent probes can be used as drug surrogates, providing indirect but relevant measurement of tissue exposure to the carrier. This may be useful, for example, to perform a first-pass evaluation of how targeting affects delivery of encapsulated compounds to target organs. This protocol is designed for non-enzymatic tissue homogenization of a variety of organ types allowing tracking of small molecule fluorophores injected freely or encapsulated in nanoparticles.


Assuntos
Especificidade de Órgãos , Técnicas de Cultura de Tecidos/métodos , Animais , Corantes Fluorescentes/metabolismo , Camundongos , Sonicação , Distribuição Tecidual
3.
Colloids Surf B Biointerfaces ; 166: 37-44, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29533842

RESUMO

Histone deacetylases (HDACs) are known to be key enzymes in cancer development and progression through their modulation of chromatin structure and the expression and post-translational modification of numerous proteins. Aggressive dedifferentiated tumors, like glioblastoma, frequently overexpress HDACs, while HDAC inhibition can lead to cell cycle arrest, promote cellular differentiation and induce apoptosis. Although multiple HDAC inhibitors, such as quisinostat, are of interest in oncology due to their potent in vitro efficacy, their failure in the clinic as monotherapies against solid tumors has been attributed to poor delivery. Thus, we were motivated to develop quisinostat loaded poly(D,L-lactide)-b-methoxy poly(ethylene glycol) nanoparticles (NPs) to test their ability to treat orthotopic glioblastoma. In developing our NP formulation, we identified a novel, pH-driven approach for achieving over 9% (w/w) quisinostat loading. We show quisinostat-loaded NPs maintain drug potency in vitro and effectively slow tumor growth in vivo, leading to a prolonged survival compared to control mice.


Assuntos
Glioblastoma/tratamento farmacológico , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/uso terapêutico , Polietilenoglicóis/química , Animais , Sistemas de Liberação de Medicamentos , Humanos , Concentração de Íons de Hidrogênio , Camundongos
4.
J Control Release ; 220(Pt A): 89-97, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26471392

RESUMO

In this work, we sought to test how surface modification of poly(lactic-co-glycolic acid) (PLGA) nanoparticles with peptide ligand alters the brain specific delivery of encapsulated molecules. For biodistribution studies, nanoparticles modified with rabies virus glycoprotein (RVG29) were loaded with small molecule drug surrogates and administered to healthy mice by lateral tail vein injection. Mice were perfused 2h after injection and major anatomical regions of the CNS were dissected (striatum, midbrain, cerebellum, hippocampus, cortex, olfactory bulb, brainstem, and cervical, thoracic, lumbar and sacral spinal cord). For functional studies, surface modified nanoparticles were loaded with the chemotherapeutic camptothecin (CPT) and administered to mice bearing intracranial GL261-Luc2 gliomas. Outcome measures included tumor growth, as measured by bioluminescent imaging, and median survival time. We observed that small molecule delivery from PLGA nanoparticles varied by as much as 150% for different tissue regions within the CNS. These differences were directly correlated to regional differences in cerebral blood volume. Although the presence of RVG29 enhanced apparent brain delivery for multiple small molecule payloads, we observed minimal evidence for targeting to muscle or spinal cord, which are the known sites for rabies virus entry into the CNS, and enhancements in brain delivery were not prolonged due to an apparent aqueous instability of the RVG29 ligand. Furthermore, we have identified concerning differences in apparent delivery kinetics as measured by different payloads: nanoparticle encapsulated DiR was observed to accumulate in the brain, whereas encapsulated Nile red was rapidly cleared. Although systemically administered CPT loaded nanoparticles slowed the growth of orthotopic brain tumors to prolong survival, the presence of RVG29 did not enhance therapeutic efficacy compared to control nanoparticles. These data are consistent with a model of delivery of hydrophobic small molecules to the brain that does not rely on internalization of polymer nanoparticles in target tissue. We discuss an important risk for discordance between biodistribution, as typically measured by drug surrogate, and therapeutic outcome, as determined by clinically relevant measurement of drug function in a disease model. These results pose critical considerations for the methods used to design and evaluate targeted drug delivery systems in vivo.


Assuntos
Camptotecina/administração & dosagem , Sistema Nervoso Central/metabolismo , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Animais , Barreira Hematoencefálica , Linhagem Celular Tumoral , Feminino , Glicoproteínas/administração & dosagem , Ligantes , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/administração & dosagem , Distribuição Tecidual , Proteínas Virais/administração & dosagem
5.
Int J Pharm ; 479(2): 374-80, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25562639

RESUMO

Effective treatment of glioblastoma multiforme remains a major clinical challenge, due in part to the difficulty of delivering chemotherapeutics across the blood-brain barrier. Systemically administered drugs are often poorly bioavailable in the brain, and drug efficacy within the central nervous system can be limited by peripheral toxicity. Here, we investigate the ability of systemically administered poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) to deliver hydrophobic payloads to intracranial glioma. Hydrophobic payload encapsulated within PLGA NPs accumulated at ∼10× higher levels in tumor compared to healthy brain. Tolerability of the chemotherapeutic camptothecin (CPT) was improved by encapsulation, enabling safe administration of up to 20mg/kg drug when encapsulated within NPs. Immunohistochemistry staining for γ-H2AFX, a marker for double-strand breaks, demonstrated higher levels of drug activity in tumors treated with CPT-loaded NPs compared to free drug. CPT-loaded NPs were effective in slowing the growth of intracranial GL261 tumors in immune competent C57 albino mice, providing a significant survival benefit compared to mice receiving saline, free CPT or low dose CPT NPs (median survival of 36.5 days compared to 28, 32, 33.5 days respectively). In sum, these data demonstrate the feasibility of treating intracranial glioma with systemically administered nanoparticles loaded with the otherwise ineffective chemotherapeutic CPT.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Camptotecina/administração & dosagem , Glioma/tratamento farmacológico , Ácido Láctico/química , Ácido Poliglicólico/química , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/toxicidade , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/patologia , Camptotecina/farmacologia , Camptotecina/toxicidade , Portadores de Fármacos/química , Estudos de Viabilidade , Glioma/patologia , Interações Hidrofóbicas e Hidrofílicas , Injeções Intravenosas , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Taxa de Sobrevida , Fatores de Tempo
6.
PLoS One ; 9(1): e85448, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24489661

RESUMO

The brain is a common site of metastatic disease in patients with breast cancer, which has few therapeutic options and dismal outcomes. The purpose of our study was to identify common and rare events that underlie breast cancer brain metastasis. We performed deep genomic profiling, which integrated gene copy number, gene expression and DNA methylation datasets on a collection of breast brain metastases. We identified frequent large chromosomal gains in 1q, 5p, 8q, 11q, and 20q and frequent broad-level deletions involving 8p, 17p, 21p and Xq. Frequently amplified and overexpressed genes included ATAD2, BRAF, DERL1, DNMTRB and NEK2A. The ATM, CRYAB and HSPB2 genes were commonly deleted and underexpressed. Knowledge mining revealed enrichment in cell cycle and G2/M transition pathways, which contained AURKA, AURKB and FOXM1. Using the PAM50 breast cancer intrinsic classifier, Luminal B, Her2+/ER negative, and basal-like tumors were identified as the most commonly represented breast cancer subtypes in our brain metastasis cohort. While overall methylation levels were increased in breast cancer brain metastasis, basal-like brain metastases were associated with significantly lower levels of methylation. Integrating DNA methylation data with gene expression revealed defects in cell migration and adhesion due to hypermethylation and downregulation of PENK, EDN3, and ITGAM. Hypomethylation and upregulation of KRT8 likely affects adhesion and permeability. Genomic and epigenomic profiling of breast brain metastasis has provided insight into the somatic events underlying this disease, which have potential in forming the basis of future therapeutic strategies.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias da Mama/genética , Aberrações Cromossômicas , Epigenômica , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/genética , Neoplasias Encefálicas/secundário , Neoplasias da Mama/patologia , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Metilação de DNA , Mineração de Dados , Feminino , Dosagem de Genes , Perfilação da Expressão Gênica , Humanos , Proteínas de Neoplasias/metabolismo , Estadiamento de Neoplasias , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...