Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Pharmacogenomics ; 15(5): 587-91, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24798715

RESUMO

Cleveland Clinic (OH, USA) launched the Center for Personalized Healthcare in 2011 to establish an evidence-based system for individualizing care by incorporating unique patient characteristics, including but not limited to genetic and family health history information, into the standard medical decision-making process. Using MyFamily, a web-based tool integrated into our electronic health record, a patient's family health history is used as a surrogate for genetic, environmental and behavioral risks to identify those with an elevated probability of developing disease. Complementing MyFamily, the Personalized Medication Program was created for the purpose of identifying gene-drug pairs for integration into clinical practice and developing the implementation tools needed to incorporate pharmacogenomics into the clinical workflow. We have successfully implemented the gene-drug pairs HLA-B*57:01-abacavir and TPMT-thiopurines into patient care. Our efforts to establish personalized medical care at Cleveland Clinic may serve as a model for large-scale integration of personalized healthcare.


Assuntos
Medicina de Precisão/economia , Medicina de Precisão/tendências , Medicina Baseada em Evidências , Objetivos , Humanos , Farmacogenética/economia , Farmacogenética/educação , Farmacogenética/tendências , Medição de Risco
3.
Am J Physiol Cell Physiol ; 297(4): C865-75, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19625604

RESUMO

Mutations in the electrogenic Na+/nHCO3- cotransporter (NBCe1, SLC4A4) cause severe proximal renal tubular acidosis, glaucoma, and cataracts in humans, indicating NBCe1 has a critical role in acid-base homeostasis and ocular fluid transport. To better understand the homeostatic roles and protein ontogeny of NBCe1, we have cloned, localized, and downregulated NBCe1 expression in zebrafish, and examined its transport characteristics when expressed in Xenopus oocytes. Zebrafish NBCe1 (zNBCe1) is 80% identical to published mammalian NBCe1 cDNAs. Like other fish NBCe1 clones, zebrafish NBCe1 is most similar to the pancreatic form of mammalian NBC (Slc4a4-B) but appears to be the dominant isoform found in zebrafish. In situ hybridization of embryos demonstrated mRNA expression in kidney pronephros and eye by 24 h postfertilization (hpf) and gill and brain by 120 hpf. Immunohistochemical labeling demonstrated expression in adult zebrafish eye and gill. Morpholino knockdown studies demonstrated roles in eye and brain development and caused edema, indicating altered fluid and electrolyte balance. With the use of microelectrodes to measure membrane potential (Vm), voltage clamp (VC), intracellular pH (pH(i)), or intracellular Na+ activity (aNa(i)), we examined the function of zNBCe1 expressed in Xenopus oocytes. Zebrafish NBCe1 shared transport properties with mammalian NBCe1s, demonstrating electrogenic Na+ and HCO3- transport as well as similar drug sensitivity, including inhibition by 4,4'-diiso-thiocyano-2,2'-disulfonic acid stilbene and tenidap. These data indicate that NBCe1 in zebrafish shares many characteristics with mammalian NBCe1, including tissue distribution, importance in systemic water and electrolyte balance, and electrogenic transport of Na+ and HCO3-. Thus zebrafish promise to be useful model system for studies of NBCe1 physiology.


Assuntos
Simportadores de Sódio-Bicarbonato/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Sequência de Aminoácidos , Animais , Clonagem Molecular , Embrião não Mamífero/metabolismo , Feminino , Ativação do Canal Iônico , Transporte de Íons , Dados de Sequência Molecular , Mutação , Oócitos/metabolismo , Especificidade de Órgãos , Técnicas de Patch-Clamp , Simportadores de Sódio-Bicarbonato/genética , Xenopus , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
4.
J Biol Chem ; 283(26): 18402-10, 2008 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-18441326

RESUMO

Glaucoma, cataracts, and proximal renal tubular acidosis are diseases caused by point mutations in the human electrogenic Na(+) bicarbonate cotransporter (NBCe1/SLC4A4) (1, 2). One such mutation, R298S, is located in the cytoplasmic N-terminal domain of NBCe1 and has only moderate (75%) function. As SLC transporters have high similarity in their membrane and N-terminal primary sequences, we homology-modeled NBCe1 onto the crystal structure coordinates of Band 3(AE1) (3). Arg-298 is predicted to be located in a solvent-inaccessible subsurface pocket and to associate with Glu-91 or Glu-295 via H-bonding and charge-charge interactions. We perturbed these putative interactions between Glu-91 and Arg-298 by site-directed mutagenesis and used expression in Xenopus oocyte to test our structural model. Mutagenesis of either residue resulted in reduced transport function. Function was "repaired" by charge reversal (E91R/R298E), implying that these two residues are interchangeable and interdependent. These results contrast the current understanding of the AE1 N terminus as protein-binding sites and propose that hkNBCe1 (and other SLC4) cytoplasmic N termini play roles in controlling HCO(3)(-) permeation.


Assuntos
Mutação , Simportadores de Sódio-Bicarbonato/química , Simportadores de Sódio-Bicarbonato/genética , Sequência de Aminoácidos , Animais , Humanos , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oócitos/metabolismo , Mutação Puntual , Conformação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Solventes/química , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA