Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Oncol (Dordr) ; 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38150153

RESUMO

STAT3 is a pleiotropic transcription factor overactivated in 70% of solid tumours. We have recently reported that inactivating mutations on residues susceptible to post-translational modifications (PTMs) in only one of the monomers (i.e. asymmetric) caused changes in the cellular distribution of STAT3 homodimers. Here, we used more controlled experimental conditions, i.e. without the interference of endogenous STAT3 (STAT3-/- HeLa cells) and in the presence of a defined cytokine stimulus (Leukemia Inhibitory Factor, LIF), to provide further evidence that asymmetric PTMs affect the nuclear translocation of STAT3 homodimers. Time-lapse microscopy for 20 min after LIF stimulation showed that S727 dephosphorylation (S727A) and K685 inactivation (K685R) slightly enhanced the nuclear translocation of STAT3 homodimers, while K49 inactivation (K49R) delayed STAT3 nuclear translocation. Our findings suggest that asymmetrically modified STAT3 homodimers could be a new level of STAT3 regulation and, therefore, a potential target for cancer therapy.

2.
Cells ; 11(2)2022 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-35053415

RESUMO

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a neurodegenerative disorder commonly diagnosed in infants and characterized by progressive cerebellar ataxia, spasticity, motor sensory neuropathy and axonal demyelination. ARSACS is caused by mutations in the SACS gene that lead to truncated or defective forms of the 520 kDa multidomain protein, sacsin. Sacsin function is exclusively studied on neuronal cells, where it regulates mitochondrial network organization and facilitates the normal polymerization of neuronal intermediate filaments (i.e., neurofilaments and vimentin). Here, we show that sacsin is also highly expressed in astrocytes, C6 rat glioma cells and N9 mouse microglia. Sacsin knockout in C6 cells (C6Sacs-/-) induced the accumulation of the glial intermediate filaments glial fibrillary acidic protein (GFAP), nestin and vimentin in the juxtanuclear area, and a concomitant depletion of mitochondria. C6Sacs-/- cells showed impaired responses to oxidative challenges (Rotenone) and inflammatory stimuli (Interleukin-6). GFAP aggregation is also associated with other neurodegenerative conditions diagnosed in infants, such as Alexander disease or Giant Axonal Neuropathy. Our results, and the similarities between these disorders, reinforce the possible connection between ARSACS and intermediate filament-associated diseases and point to a potential role of glia in ARSACS pathology.


Assuntos
Deleção de Genes , Filamentos Intermediários/metabolismo , Chaperonas Moleculares/metabolismo , Neuroglia/metabolismo , Animais , Animais Recém-Nascidos , Linhagem Celular Tumoral , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Estresse Oxidativo , Ratos Sprague-Dawley , Rotenona/toxicidade
3.
FEBS J ; 289(20): 6235-6255, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34235865

RESUMO

The Signal Transducer and Activator of Transcription (STAT) family of transcription factors is involved in inflammation, immunity, development, cancer, and response to injury, among other biological phenomena. Canonical STAT signaling is often represented as a 3-step pathway involving the sequential activation of a membrane receptor, an intermediate kinase, and a STAT transcription factor. The rate-limiting phosphorylation at a highly conserved C-terminal tyrosine residue determines the nuclear translocation and transcriptional activity of STATs. This apparent simplicity is actually misleading and can hardly explain the pleiotropic nature of STATs, the existence of various noncanonical STAT pathways, or the key role of the N-terminal domain in STAT functions. More than 80 post-translational modifications (PTMs) have been identified for STAT3, but their functions remain barely understood. Here, we provide a brief but comprehensive overview of these underexplored PTMs and their role on STAT3 canonical and noncanonical functions. A less tyrosine-centric point of view may be required to advance our understanding of STAT signaling.


Assuntos
Fator de Transcrição STAT3 , Transdução de Sinais , Fosforilação , Processamento de Proteína Pós-Traducional , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Tirosina/metabolismo
4.
J Cell Mol Med ; 24(14): 7949-7958, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32485058

RESUMO

Paclitaxel-induced peripheral neuropathy (PIPN) is often associated with neuropathic pain and neuroinflammation in the central and peripheral nervous system. Antihypertensive drug losartan, an angiotensin II receptor type 1 (AT1R) blocker, was shown to have anti-inflammatory and neuroprotective effects in disease models, predominantly via activation of peroxisome proliferator-activated receptor gamma (PPARγ). Here, the effect of systemic losartan treatment (100 mg/kg/d) on mechanical allodynia and neuroinflammation was evaluated in rat PIPN model. The expression of pro-inflammatory markers protein and mRNA levels in dorsal root ganglia (DRGs) and spinal cord dorsal horn (SCDH) were measured with Western blot, ELISA and qPCR 10 and 21 days after PIPN induction. Losartan treatment attenuated mechanical allodynia significantly. Paclitaxel induced overexpression of C-C motif chemokine ligand 2 (CCL2), tumour necrosis alpha (TNFα) and interleukin-6 (IL-6) in DRGs, where the presence of macrophages was demonstrated. Neuroinflammatory changes in DRGs were accompanied with glial activation and pro-nociceptive modulators production in SCDH. Losartan significantly attenuated paclitaxel-induced neuroinflammatory changes and induced expression of pro-resolving markers (Arginase 1 and IL-10) indicating a possible shift in macrophage polarization. Considering the safety profile of losartan, acting also as partial PPARγ agonist, it may be considered as a novel treatment strategy for PIPN patients.


Assuntos
Antineoplásicos Fitogênicos/efeitos adversos , Losartan/farmacologia , Neuralgia/tratamento farmacológico , Neuralgia/etiologia , Paclitaxel/efeitos adversos , Animais , Biomarcadores , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Gânglios Espinais/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Neuralgia/diagnóstico , Neuralgia/metabolismo , Manejo da Dor , Ratos
5.
J Neurochem ; 136(1): 133-47, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26440453

RESUMO

After peripheral nerve injury microglial reactivity change in the spinal cord is associated with an early activation of Janus kinase (JAK)/STAT3 transduction pathway whose blockade attenuates local inflammation and pain hypersensitivity. However, the consequences of microglial JAK/STAT3-mediated signaling on neighboring cells are unknown. Using an in vitro paradigm we assessed the impact of microglial JAK/STAT3 activity on functional characteristics of astrocytes and spinal cord neurons. Purified rat primary microglia was stimulated with JAK/STAT3 classical activator interleukin-6 in the presence or absence of a selective STAT3 inhibitor and rat primary astrocytes or spinal cord neurons were exposed to microglia conditioned media (CM). JAK/STAT3 activity-generated microglial CM modulated both astrocyte and neuron characteristics. Beyond inducing mRNA expression changes in various targets of interest in astrocytes and neurons, microglia CM activated c-Jun N-terminal kinase, STAT3 and NF-κB intracellular pathways in astrocytes and promoted their proliferation. Without modifying neuronal excitability or survival, CM affected the nerve processes morphology and distribution of the post-synaptic density protein 95, a marker of glutamatergic synaptic contacts. These findings show that JAK/STAT3 activity in microglia impacts the functional characteristics of astrocytes and neurons. This suggests its participation in spinal cord tissue plasticity and remodeling occurring after peripheral nerve injury. We show that the activity of JAK/STAT3 pathway in microglial cells confers them a specific signaling modality toward neighboring cells, promoting astrocyte proliferation and changes in neuronal morphology. These in vitro data suggest that the early JAK/STAT3 activation in spinal cord microglia, associated with peripheral nerve injury, participates in functional alteration of various cell populations and in spinal tissue remodeling.


Assuntos
Astrócitos/metabolismo , Janus Quinases/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Fator de Transcrição STAT3/metabolismo , Medula Espinal/metabolismo , Animais , Células Cultivadas , Feminino , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Medula Espinal/citologia
6.
Biochem J ; 428(1): 113-24, 2010 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-20192922

RESUMO

UII (urotensin II) and its paralogue URP (UII-related peptide) are two vasoactive neuropeptides whose respective central actions are currently unknown. In the present study, we have compared the mechanism of action of URP and UII on cultured astrocytes. Competition experiments performed with [125I]UII showed the presence of very-high- and high-affinity binding sites for UII, and a single high-affinity site for URP. Both UII and URP provoked a membrane depolarization accompanied by a decrease in input resistance, stimulated the release of endozepines, neuropeptides specifically produced by astroglial cells, and generated an increase in [Ca2+]c (cytosolic Ca2+ concentration). The UII/URP-induced [Ca2+]c elevation was PTX (pertussis toxin)-insensitive, and was blocked by the PLC (phospholipase C) inhibitor U73122 or the InsP3 channel blocker 2-APB (2-aminoethoxydiphenylborane). The addition of the Ca2+ chelator EGTA reduced the peak and abolished the plateau phase, whereas the T-type Ca2+ channel blocker mibefradil totally inhibited the Ca2+ response evoked by both peptides. However, URP and UII induced a mono- and bi-phasic dose-dependent increase in [Ca2+]c and provoked short- and long-lasting Ca2+ mobilization respectively. Similar mono- and bi-phasic dose-dependent increases in [3H]inositol incorporation into polyphosphoinositides in astrocytes was obtained, but the effect of UII was significantly reduced by PTX, although BRET (bioluminescence resonance energy transfer) experiments revealed that both UII and URP recruited Galphao-protein. Finally, UII, but not URP, exerted a dose-dependent mitogenic activity on astrocytes. Therefore we described that URP and UII exert not only similar, but also divergent actions on astrocyte activity, with UII exhibiting a broader range of activities at physiological peptide concentrations.


Assuntos
Astrócitos/metabolismo , Proliferação de Células , Hormônios Peptídicos/metabolismo , Urotensinas/metabolismo , Sequência de Aminoácidos , Animais , Ratos
7.
Glia ; 56(13): 1380-9, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18512251

RESUMO

Astroglial cells synthesize and release endozepines, a family of neuropeptides derived from diazepam-binding inhibitor (DBI). The authors have recently shown that beta-amyloid peptide (Abeta) stimulates DBI gene expression and endozepine release. The purpose of this study was to determine the mechanism of action of Abeta in cultured rat astrocytes. Abeta(25-35) and the N-formyl peptide receptor (FPR) agonist N-formyl-Met-Leu-Phe (fMLF) increased the secretion of endozepines in a dose-dependent manner with EC(50) value of approximately 2 microM. The stimulatory effects of Abeta(25-35) and the FPR agonists fMLF and N-formyl-Met-Met-Met (fMMM) on endozepine release were abrogated by the FPR antagonist N-t-Boc-Phe-Leu-Phe-Leu-Phe. In contrast, Abeta(25-35) increased DBI mRNA expression through a FPR-independent mechanism. Abeta(25-35) induced a transient stimulation of cAMP formation and a sustained activation of polyphosphoinositide turnover. The stimulatory effect of Abeta(25-35) on endozepine release was blocked by the adenylyl cyclase inhibitor somatostatin, the protein kinase A (PKA) inhibitor H89, the phospholipase C inhibitor U73122, the protein kinase C (PKC) inhibitor chelerythrine and the ATP binding cassette transporter blocker glyburide. Taken together, these data demonstrate for the first time that Abeta(25-35) stimulates endozepine release from rat astrocytes through a FPR receptor positively coupled to PKA and PKC.


Assuntos
Peptídeos beta-Amiloides/fisiologia , Astrócitos/metabolismo , Inibidor da Ligação a Diazepam/metabolismo , Fragmentos de Peptídeos/fisiologia , Receptores de Formil Peptídeo/metabolismo , Animais , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Neuropeptídeos/fisiologia , Proteína Quinase C/metabolismo , Ratos , Ratos Wistar , Receptor Cross-Talk/fisiologia , Receptores de Formil Peptídeo/agonistas
8.
Peptides ; 29(5): 727-34, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18355946

RESUMO

Cultured rat cortical astrocytes express two types of urotensin II (UII) binding sites: a high affinity site corresponding to the UT (GPR14) receptor and a low affinity site that has not been fully characterized. Activation of the high affinity site in astroglial cells stimulates polyphosphoinositide (PIP) turnover and provokes an increase in intracellular calcium concentration. We have hypothesized that the existence of distinct affinity sites for UII in rat cortical astrocytes could be accounted for by a possible cross-talk between UT and the ligand-gated ion channel GABA(A) receptor (GABA A R). Exposure of cultured astrocytes to UII provoked a bell-shaped increase in cAMP production, with an EC50 stimulating value of 0.83+/-0.04 pM, that was totally blocked in the presence of the adenylyl cyclase inhibitor SQ 22,536. In contrast, UII was found to inhibit forskolin-induced cAMP formation. In the presence of the specific PKA inhibitor H89, UII provoked a sustained stimulation of cAMP formation. Inhibition of PKA by H89 strongly reduced the stimulatory effect of UII on PIP metabolism. GABA and the GABA A R agonist isoguvacine provoked a marked inhibition of UII-induced cAMP synthesis and a significant reduction of UII-evoked PIP turnover. These data suggest that functional interaction between UT and GABA(A)R negatively regulates coupling of UT to the classical PLC/IP(3) signaling cascade as well as to the adenylyl cyclase/PKA pathway.


Assuntos
Astrócitos/metabolismo , Receptores de GABA-A/metabolismo , Urotensinas/metabolismo , Adenina/análogos & derivados , Adenina/metabolismo , Animais , Astrócitos/citologia , Células Cultivadas , Córtex Cerebral/citologia , Colforsina/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Inibidores Enzimáticos/metabolismo , Agonistas GABAérgicos/metabolismo , Ácidos Isonicotínicos/metabolismo , Fosfatidilinositóis/metabolismo , Ratos , Ratos Wistar , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Somatostatina/metabolismo , Urotensinas/genética
9.
Peptides ; 29(5): 813-9, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18082287

RESUMO

Cultured rat astrocytes, which express functional urotensin II (UII)/UII-related peptide (URP) receptors (UT), represent a very suitable model to investigate the pharmacological profile of UII and URP analogs towards native UT. We have recently designed three URP analogs [D-Trp4]URP, [Orn5]URP and [D-Tyr6]URP, that act as UT antagonists in the rat aortic ring bioassay. However, it has been previously reported that UII/URP analogs capable of inhibiting the contractile activity of UII possess agonistic activity on UT-transfected cells. In the present study, we have compared the ability of URP analogs to compete for [125 I]URP binding and to modulate cytosolic calcium concentration ([Ca2+]c) in cultured rat astrocytes. All three analogs displaced radioligand binding: [D-Trp4]URP and [D-Tyr6]URP interacted with high- and low-affinity sites whereas [Orn5]URP only bound high-affinity sites. [D-Trp4]URP and [D-Tyr6]URP both induced a robust increase in [Ca2+]c in astrocytes while [Orn5]URP was totally devoid of activity. [Orn5]URP provoked a concentration-dependent inhibition of URP- and UII-evoked [Ca2+]c increase and a rightward shift of the URP and UII dose-response curves. The present data indicate that [D-Trp4]URP and [D-Tyr6]URP, which act as UII antagonists in the rat aortic ring assay, behave as agonists in the [Ca2+]c mobilization assay in cultured astrocytes, whereas [Orn5]URP is a pure selective antagonist in both rat aortic ring contraction and astrocyte [Ca2+]c mobilization assays.


Assuntos
Astrócitos/metabolismo , Córtex Cerebral/citologia , Hormônios Peptídicos , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Urotensinas/metabolismo , Sequência de Aminoácidos , Animais , Astrócitos/citologia , Cálcio/metabolismo , Células Cultivadas , Hormônios Peptídicos/química , Hormônios Peptídicos/metabolismo , Ensaio Radioligante , Ratos , Receptores Acoplados a Proteínas G/metabolismo , Urotensinas/genética
10.
J Neurochem ; 99(2): 582-95, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16942596

RESUMO

The urotensin II (UII) gene is primarily expressed in the central nervous system, but the functions of UII in the brain remain elusive. Here, we show that cultured rat astrocytes constitutively express the UII receptor (UT). Saturation and competition experiments performed with iodinated rat UII ([(125)I]rUII) revealed the presence of high- and low-affinity binding sites on astrocytes. Human UII (hUII) and the two highly active agonists hUII(4-11) and [3-iodo-Tyr9]hUII(4-11) were also very potent in displacing [(125)I]rUII from its binding sites, whereas the non-cyclic analogue [Ser5,10]hUII(4-11) and somatostatin-14 could only displace [(125)I]rUII binding at micromolar concentrations. Reciprocally, rUII failed to compete with [(125)I-Tyr0,D-Trp8]somatostatin-14 binding on astrocytes. Exposure of cultured astrocytes to rUII stimulated [(3)H]inositol incorporation and increased intracellular Ca(2+) concentration in a dose-dependent manner. The stimulatory effect of rUII on polyphosphoinositide turnover was abolished by the phospholipase C inhibitor U73122, but only reduced by 56% by pertussis toxin. The GTP analogue Gpp(NH)p caused its own biphasic displacement of [(125)I]rUII binding and provoked an affinity shift of the competition curve of rUII. Pertussis toxin shifted the competition curve towards a single lower affinity state. Taken together, these data demonstrate that rat astrocytes express high- and low-affinity UII binding sites coupled to G proteins, the high-affinity receptor exhibiting the same pharmacological and functional characteristics as UT.


Assuntos
Astrócitos/metabolismo , Ligação Competitiva/fisiologia , Córtex Cerebral/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Urotensinas/metabolismo , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Ligação Competitiva/efeitos dos fármacos , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , Córtex Cerebral/citologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Guanosina Trifosfato/análogos & derivados , Guanosina Trifosfato/metabolismo , Inositol/metabolismo , Radioisótopos do Iodo , Fosfatos de Fosfatidilinositol/metabolismo , Ensaio Radioligante , Ratos , Ratos Wistar , Fosfolipases Tipo C/antagonistas & inibidores , Fosfolipases Tipo C/metabolismo , Urotensinas/farmacocinética , Urotensinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...