Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37047374

RESUMO

The current study was focused on the potential of pure P25 TiO2 nanoparticles (NPs) and Fe(1%)-N co-doped P25 TiO2 NPs to induce cyto- and genotoxic effects in MRC-5 human pulmonary fibroblasts. The oxidative lesions of P25 NPs were reflected in the amount of 8-hydroxydeoxyguanosine accumulated in DNA and the lysosomal damage produced, but iron-doping partially suppressed these effects. However, neither P25 nor Fe(1%)-N co-doped P25 NPs had such a serious effect of inducing DNA fragmentation or activating apoptosis signaling. Moreover, oxo-guanine glycosylase 1/2, a key enzyme of the base excision repair mechanism, was overexpressed in response to the oxidative DNA deterioration induced by P25 and P25-Fe(1%)-N NPs.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Humanos , Nanopartículas Metálicas/toxicidade , Dano ao DNA , Titânio/toxicidade , Pulmão , Fibroblastos , DNA/farmacologia
2.
Sci Rep ; 12(1): 6887, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35477987

RESUMO

The present study aimed to assess the feasibility of developing low-cost multipurpose iron oxide/TiO2 nanocomposites (NCs) for use in combined antitumor therapies and water treatment applications. Larger size (≈ 100 nm) iron oxide nanoparticles (IONPs) formed magnetic core-TiO2 shell structures at high Fe/Ti ratios and solid dispersions of IONPs embedded in TiO2 matrices when the Fe/Ti ratio was low. When the size of the iron phase was comparable to the size of the crystallized TiO2 nanoparticles (≈ 10 nm), the obtained nanocomposites consisted of randomly mixed aggregates of TiO2 and IONPs. The best inductive heating and ROS photogeneration properties were shown by the NCs synthesized at 400 °C which contained the minimum amount of α-Fe2O3 and sufficiently crystallized anatase TiO2. Their cytocompatibility was assessed on cultured human and murine fibroblast cells and analyzed in relation to the adsorption of bovine serum albumin from the culture medium onto their surface. The tested nanocomposites showed excellent cytocompatibility to human fibroblast cells. The results also indicated that the environment (i.e. phosphate buffer or culture medium) used to disperse the nanomaterials prior to performing the viability tests can have a significant impact on their cytotoxicity.


Assuntos
Nanocompostos , Óxidos , Animais , Compostos Férricos/química , Compostos Férricos/toxicidade , Humanos , Camundongos , Nanocompostos/química , Nanocompostos/toxicidade , Titânio
3.
Nanomaterials (Basel) ; 12(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35269258

RESUMO

Titanium dioxide nanoparticles (TiO2 NPs) are found in several products on the market that include paints, smart textiles, cosmetics and food products. Besides these, TiO2 NPs are intensively researched for their use in biomedicine, agriculture or installations to produce energy. Taking into account that several risks have been associated with the use of TiO2 NPs, our aim was to provide TiO2 NPs with improved qualities and lower toxicity to humans and the environment. Pure TiO2 P25 NPs and the same NPs co-doped with iron (1%) and nitrogen atoms (P25-Fe(1%)-N NPs) by hydrothermal treatment to increase the photocatalytic activity in the visible light spectrum were in vitro evaluated in the presence of human lung cells. After 24 and 72 h of incubation, the oxidative stress was initiated in a time- and dose-dependent manner with major differences between pure P25 and P25-Fe(1%)-N NPs as revealed by malondialdehyde and reactive oxygen species levels. Additionally, a lower dynamic of autophagic vacuoles formation was observed in cells exposed to Fe-N-doped P25 NPs compared to the pure ones. Therefore, our results suggest that Fe-N doping of TiO2 NPs can represent a valuable alternative to the conventional P25 Degussa particles in industrial and medical applications.

4.
Nanomaterials (Basel) ; 12(6)2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35335750

RESUMO

MoO2-Fe2O3 nanoparticle systems were successfully synthesized by mechanochemical activation of MoO2 and α-Fe2O3 equimolar mixtures throughout 0-12 h of ball-milling. The role of the long-range ferromagnetism of MoO2 on a fraction of more defect hematite nanoparticles supporting a defect antiferromagnetic phase down to the lowest temperatures was investigated in this work. The structure and the size evolution of the nanoparticles were investigated by X-ray diffraction, whereas the magnetic properties were investigated by SQUID magnetometry. The local electronic structure and the specific phase evolution in the analyzed system versus the milling time were investigated by temperature-dependent Mössbauer spectroscopy. The substantially shifted magnetic hysteresis loops were interpreted in terms of the unidirectional anisotropy induced by pinning the long-range ferromagnetic order of the local net magnetic moments in the defect antiferromagnetic phase, as mediated by the diluted magnetic oxide phase of MoO2, to those less defect hematite nanoparticles supporting Morin transition. The specific evolutions of the exchange bias and of the coercive field versus temperature in the samples were interpreted in the frame of the specific phase evolution pointed out by Mössbauer spectroscopy. Depending on the milling time, a different fraction of defect hematite nanoparticles is formed. Less nanoparticles supporting the Morin transition are formed for samples exposed to a longer milling time, with a direct influence on the induced unidirectional anisotropy and related effects.

6.
Int J Mol Sci ; 22(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34502536

RESUMO

The advancement of nanotechnology in the last decade has developed an abundance of novel and intriguing TiO2-based nanomaterials that are widely used in many sectors, including industry (as a food additive and colorant in cosmetics, paints, plastics, and toothpaste) and biomedicine (photoelectrochemical biosensing, implant coatings, drug delivery, and new emerging antimicrobial agents). Therefore, the increased use of engineered nanomaterials in the industry has raised serious concern about human exposure and their unexpected cytotoxic effects. Since inhalation is considered the most relevant way of absorbing nanomaterials, different cell death mechanisms induced in MRC-5 lung fibroblasts, following the exposure to functionalized TiO2 NPs, were investigated. Long-term exposure to TiO2 nanoparticles co-doped with 1% of iron and nitrogen led to the alteration of p53 protein activity and the gene expression controlled by this suppressor (NF-kB and mdm2), DNA damage, cell cycle disruptions at the G2/M and S phases, and lysosomal membrane permeabilization and the subsequent release of cathepsin B, triggering the intrinsic pathway of apoptosis in a Bax- and p53-independent manner. Our results are of major significance, contributing to the understanding of the mechanisms underlying the interaction of these nanoparticles with in vitro biological systems, and also providing useful information for the development of new photocatalytic nanoparticles that are active in the visible spectrum, but with increased biocompatibility.


Assuntos
Monóxido de Carbono/química , Fibroblastos/efeitos dos fármacos , Ferro/química , Nanopartículas Metálicas/administração & dosagem , Nitrogênio/química , Titânio/química , Proteína Supressora de Tumor p53/metabolismo , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Pulmão/citologia , Pulmão/metabolismo , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Espectroscopia Fotoeletrônica , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/genética , Difração de Raios X
7.
Materials (Basel) ; 13(1)2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31906422

RESUMO

In this work, ZnO-CdS composite powders synthesized by a simple chemical precipitation method were thoroughly characterized. The morphological, structural, compositional, photocatalytical, and biological properties of the prepared composites were investigated in comparison with those of the pristine components and correlated with the CdS concentration. ZnO-CdS composites contain flower-like structures, their size being tuned by the CdS amount added during the chemical synthesis. The photocatalytic activity of the composites was analyzed under UV irradiation using powders impregnated with methylene blue; the tests confirming that the presence of CdS along the ZnO in composites can improve the dye discoloration. The biological properties such as antioxidant capacity, antibacterial activity, and cytotoxicity of the ZnO, CdS, and ZnO-CdS composites were evaluated. Thus, the obtained composites presented medium antioxidant effect, biocidal activity against Escherichia coli, and no toxicity (at concentrations less than 0.05 mg/mL for composites with a low CdS amount) for human fibroblast cells. Based on these results, such composites can be used as photocatalytic and/or biocidal additives for photoactive coatings, paints, or epoxy floors, which in their turn can provide a cleaner and healthier environment.

8.
Nanomaterials (Basel) ; 11(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383656

RESUMO

The equimolar oxide mixture ß-Ga2O3-α-Fe2O3 was subjected to high-energy ball milling (HEBM) with the aim to obtain the nanoscaled GaFeO3 ortho-ferrite. X-ray diffraction, 57Fe Mössbauer spectroscopy, and transmission electron microscopy were used to evidence the phase structure and evolution of the equimolar nano-system ß-Ga2O3-α-Fe2O3 under mechanochemical activation, either as-prepared or followed by subsequent calcination. The mechanical activation was performed for 2 h to 12 h in normal atmosphere. After 12 h of HEBM, only nanoscaled (~20 nm) gallium-doped α-Fe2O3 was obtained. The GaFeO3 structure was obtained as single phase, merely after calcination at 950 °C for a couple of hours, of the sample being subjected to HEBM for 12 h. This temperature is 450 °C lower than used in the conventional solid phase reaction to obtain gallium orthoferrite. The optical and magnetic properties of representative nanoscaled samples, revealing their multifunctional character, were presented.

9.
Nanomaterials (Basel) ; 9(10)2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31623131

RESUMO

Europium substituted bismuth ferrite powders were synthesized by the sol-gel technique. The precursor xerogel was characterized by thermal analysis. Bi1-xEuxFeO3 (x = 0-0.20) powders obtained after thermal treatment of the xerogel at 600 °C for 30 min were investigated by X-ray diffraction (XRD), scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Raman spectroscopy, and Mössbauer spectroscopy. Magnetic behavior at room temperature was tested using vibrating sample magnetometry. The comparative results showed that europium has a beneficial effect on the stabilization of the perovskite structure and induced a weak ferromagnetism. The particle size decreases after the introduction of Eu3+ from 167 nm for x = 0 to 51 nm for x = 0.20. Photoluminescence spectroscopy showed the enhancement of the characteristic emission peaks intensity with the increase of Eu3+ concentration.

10.
Mater Sci Eng C Mater Biol Appl ; 94: 318-332, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30423714

RESUMO

Our study reports the fabrication and characterization (surface morphology, hydrophobicity/hydrophilicity, photocatalytic efficiency) of cotton fibers treated by various methods with graphene oxide decorated with Fe, N-doped TiO2 nanoparticles. Designed as prospective industrial self-cleaning, antimicrobial and biocompatible textiles, microbiological and cytotoxicity tests were performed on these particles-treated fibers to validate their qualities. The photocatalytic effect was dependent on chemicals used to disperse the nanoparticles, the parameters of the treatment, the fiber structure and composition of the material. The double and triple treatment of the textiles with the same particle dispersion resulted in a relatively uniform coverage of cotton fibers with relatively large amounts of particles. A larger amount of doped TiO2 particles demonstrated a better photocatalytic effect under visible light. The material's hydrophobicity increased with the number of treatments due to the deposition of successive layers of reduced graphene, ensuring self-cleaning properties. The photocatalyst-treated cotton fabrics exhibited an increased resistance to Enterococcus faecalis and Escherichia coli colonization, and also high biocompatibility, as they did not affect the cell viability, membrane integrity and morphology, nor induce inflammation. All these data confirm the improved properties of cotton fibers treated with graphene oxide decorated with Fe, N-doped TiO2 particles in order to be used as industrial self-cleaning and biocompatible textiles.


Assuntos
Materiais Biocompatíveis/química , Fibra de Algodão , Grafite/química , Ferro/química , Luz , Nanopartículas/química , Nitrogênio/química , Titânio/química , Citoesqueleto de Actina/metabolismo , Catálise , Fibroblastos/citologia , Granulócitos/citologia , Humanos , Lisossomos/metabolismo , Masculino , Nanopartículas/ultraestrutura , Tamanho da Partícula , Fagocitose , Espectrometria por Raios X , Análise Espectral Raman , Molhabilidade
11.
Phys Chem Chem Phys ; 20(21): 14652-14663, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29770415

RESUMO

The formation of separate phases in crystalline materials is promoted by doping with elements with different valences and ionic radii. Control of the formation of separate phases in multiferroics is extremely important for their magnetic, ferroelectric and elastic properties, which are relevant for multifunctional applications. The ordering of dopants and incipient phase separation were studied in lead titanate-based multiferroics with the formula (Pb0.88Nd0.08)(Ti0.98-xFexMn0.02)O3 (x = 0.00, 0.03, 0.04, 0.05) by means of a combination of Mössbauer spectroscopy, XPS, HRTEM, dielectric and anelastic spectroscopy. We found that Fe ions are substituted as Fe3+ at Ti sites and preferentially exhibit pentahedral coordination, whereas Ti ions have coexisting valences of Ti4+/Ti3+. Fe3+ ions are preferentially ordered in clusters, and there exists a transition temperature TC1, below which phase separation occurs between a tetragonal phase T1 free of magnetic clusters and a cubic phase, and a lower transition temperature TC2, below which the cubic phase rich in magnetic clusters is transformed into a tetragonal phase T2. The phase separation persists at the nanoscale level down to room temperature and is visible in HRTEM images as a mixing of nanodomains with different tetragonality ratios. This phase separation was observed over the whole studied concentration range of xFe values. It occurs progressively with the value of xFe, and the transition temperature TC2 decreases with the concentration from about 620 K (xFe = 0.03) to about 600 K (xFe = 0.05), while TC1 remains nearly constant.

12.
Nanomaterials (Basel) ; 7(9)2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28925946

RESUMO

Graphene is widely used in nanotechnologies to amplify the photocatalytic activity of TiO2, but the development of TiO2/graphene composites imposes the assessment of their risk to human and environmental health. Therefore, reduced graphene oxide was decorated with two types of TiO2 particles co-doped with 1% iron and nitrogen, one of them being obtained by a simultaneous precipitation of Ti3+ and Fe3+ ions to achieve their uniform distribution, and the other one after a sequential precipitation of these two cations for a higher concentration of iron on the surface. Physico-chemical characterization, photocatalytic efficiency evaluation, antimicrobial analysis and biocompatibility assessment were performed for these TiO2-based composites. The best photocatalytic efficiency was found for the sample with iron atoms localized at the sample surface. A very good anti-inhibitory activity was obtained for both samples against biofilms of Gram-positive and Gram-negative strains. Exposure of human skin and lung fibroblasts to photocatalysts did not significantly affect cell viability, but analysis of oxidative stress showed increased levels of carbonyl groups and advanced oxidation protein products for both cell lines after 48 h of incubation. Our findings are of major importance by providing useful knowledge for future photocatalytic self-cleaning and biomedical applications of graphene-based materials.

13.
Int J Mol Sci ; 18(2)2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28125053

RESUMO

TiO2-based photocatalysts were obtained during previous years in order to limit pollution and to ease human daily living conditions due to their special properties. However, obtaining biocompatible photocatalysts is still a key problem, and the mechanism of their toxicity recently received increased attention. Two types of TiO2 nanoparticles co-doped with 1% of iron and nitrogen (TiO2-1% Fe-N) atoms were synthesized in hydrothermal conditions at pH of 8.5 (HT1) and 5.5 (HT2), and their antimicrobial activity and cytotoxic effects exerted on human pulmonary and dermal fibroblasts were assessed. These particles exhibited significant microbicidal and anti-biofilm activity, suggesting their potential application for microbial decontamination of different environments. In addition, our results demonstrated the biocompatibility of TiO2-1% Fe-N nanoparticles at low doses on lung and dermal cells, which may initiate oxidative stress through dose accumulation. Although no significant changes were observed between the two tested photocatalysts, the biological response was cell type specific and time- and dose-dependent; the lung cells proved to be more sensitive to nanoparticle exposure. Taken together, these experimental data provide useful information for future photocatalytic applications in the industrial, food, pharmaceutical, and medical fields.


Assuntos
Fibroblastos/metabolismo , Fibroblastos/microbiologia , Nanopartículas/química , Processos Fotoquímicos , Titânio/química , Citoesqueleto de Actina , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Bactérias , Catálise , Sobrevivência Celular/efeitos dos fármacos , Coloides , Humanos , Hidrodinâmica , Peroxidação de Lipídeos , Nanopartículas/administração & dosagem , Nanopartículas/ultraestrutura , Tamanho da Partícula , Espectroscopia Fotoeletrônica , Difração de Raios X
14.
Nanomaterials (Basel) ; 6(11)2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28335342

RESUMO

The development of innovative technologies to modify natural textiles holds an important impact for medical applications, including the prevention of contamination with microorganisms, particularly in the hospital environment. In our study, Fe and N co-doped TiO2 nanoparticles have been obtained via the hydrothermal route, at moderate temperature, followed by short thermal annealing at 400 °C. These particles were used to impregnate polyester (PES) materials which have been evaluated for their morphology, photocatalytic performance, antimicrobial activity against bacterial reference strains, and in vitro biocompatibility on human skin fibroblasts. Microscopic examination and quantitative assays have been used to evaluate the cellular morphology and viability, cell membrane integrity, and inflammatory response. All treated PES materials specifically inhibited the growth of Gram-negative bacilli strains after 15 min of contact, being particularly active against Pseudomonas aeruginosa. PES fabrics treated with photocatalysts did not affect cell membrane integrity nor induce inflammatory processes, proving good biocompatibility. These results demonstrate that the treatment of PES materials with TiO2-1% Fe-N particles could provide novel biocompatible fabrics with short term protection against microbial colonization, demonstrating their potential for the development of innovative textiles that could be used in biomedical applications for preventing patients' accidental contamination with microorganisms from the hospital environment.

15.
Materials (Basel) ; 9(9)2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28773913

RESUMO

Our research was focused on the evaluation of the photocatalytic and antimicrobial properties, as well as biocompatibility of cotton fabrics coated with fresh and reused dispersions of nanoscaled TiO2-1% Fe-N particles prepared by the hydrothermal method and post-annealed at 400 °C. The powders were characterized by X-ray diffraction (XRD), Mössbauer spectroscopy and X-ray photoelectron spectroscopy. The textiles coated with doped TiO2 were characterized by scanning electron microscopy and energy dispersive X-ray analyses, and their photocatalytic effect by trichromatic coordinates of the materials stained with methylene blue and coffee and exposed to UV, visible and solar light. The resulting doped TiO2 consists of a mixture of prevailing anatase phase and a small amount (~15%-20%) of brookite, containing Fe3+ and nitrogen. By reusing dispersions of TiO2-1% Fe-N, high amounts of photocatalysts were deposited on the fabrics, and the photocatalytic activity was improved, especially under visible light. The treated fabrics exhibited specific antimicrobial features, which were dependent on their composition, microbial strain and incubation time. The in vitro biocompatibility evaluation on CCD-1070Sk dermal fibroblasts confirmed the absence of cytotoxicity after short-term exposure. These results highlight the potential of TiO2-1% Fe-N nanoparticles for further use in the development of innovative self-cleaning and antimicrobial photocatalytic cotton textiles. However, further studies are required in order to assess the long-term skin exposure effects and the possible particle release due to wearing.

16.
Sensors (Basel) ; 15(7): 17495-506, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26205267

RESUMO

The current paper reports on a sonochemical synthesis method for manufacturing nanostructured (typical grain size of 50 nm) SrTi0.6Fe0.4O2.8 (Sono-STFO40) powder. This powder is characterized using X ray-diffraction (XRD), Mössbauer spectroscopy and Scanning Electron Microscopy (SEM), and results are compared with commercially available SrTi0.4Fe0.6O2.8 (STFO60) powder. In order to manufacture resistive oxygen sensors, both Sono-STFO40 and STFO60 are deposited, by dip-pen nanolithography (DPN) method, on an SOI (Silicon-on-Insulator) micro-hotplate, employing a tungsten heater embedded within a dielectric membrane. Oxygen detection tests are performed in both dry (RH = 0%) and humid (RH = 60%) nitrogen atmosphere, varying oxygen concentrations between 1% and 16% (v/v), at a constant heater temperature of 650 °C. The oxygen sensor, based on the Sono-STFO40 sensing layer, shows good sensitivity, low power consumption (80 mW), and short response time (25 s). These performance are comparable to those exhibited by state-of-the-art O2 sensors based on STFO60, thus proving Sono-STFO40 to be a material suitable for oxygen detection in harsh environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...